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SEQUENCING WITH SERIES-PARALLEL PRECEDENCE
CONSTRAINTS*

CLYDE L. MONMAf$ euo JEFFREY B. SIDNEY+

One of the most important ideas in the theory of sequencing and scheduling is the method
of adjacent pairwise job interchange. This method compares the costs of two sequences which
differ only by interchanging a pair of adjacent jobs. In 1956, W. E. Smith defined a class of
problems for which a total preference ordering of the jobs exists with the property that in any
sequence, whenever two adjacentjobs are not in preference order, they may be interchanged
with no resultant cost increase. In such a case the unconstrained sequencing problem is easily
solved by sequencing thejobs in preference order.

In this paper, a natural subclass of these problems is considered for which such a total
. preference ordering exists for all subsequences ofjobs. The main result is an efficient general

algorirhm for these sequencing problems with series-parallel precedence constraints. These
probleris include the least cost fault detcction problem, the one-machine total weighted
complction time problem; the two-machine maximum completion time flow-shop problem
and the maldmum cumulativi cost problem.

Infioduc'tlon. In this paper we introduce a class of problems based on easily
verifiable properties. This class includes many widely-studied problems; for example,
Johnson's [0] classical two-machine maximum completion time flow-shop problem,
the one-machine total weighted completion time problem, the maximum cumulative
cost problem and the least cost fault detection problem. An efficient general algorithm
is derived for solving these problems with series-parallel precedence constraints. This
unifies the recent results by Sidney [30], Lawler [16] and Abdel-wahab and Kameda
[2], [3], and extends a result by Garey [7].

l. Basic definitions and notation. Ajob is the basic unit of work to be sequenced.
Each job is characterized by certain parameters; for example, in the total weighted
completion time problem a job is specified by a weighting factor and a nonnegative
processing time. We assume given a set ,f : {1, 2, . , . , n} of jobs to be sequenced. A
sequence r of & jobs is a function from {1,2,..., k} to ,I and is represented by
(s(l), s(2), . . . , s(ft)), where s(i) is the ith job in the sequence s. A job may appeat
several times, or not at all, in a sequence. Multiple occurrences of the same job are
considered to be duplicate copies of that job, i.e., they have the same parameter
values. Sequences are denoted by the lower case letters s, t, u, D afld w. A permutation
of,I is denoted by fI. A sequencing or cost functron assigns a real value or cost to each
sequence.

A sequencing problem, on a set of jobs "I with cost function / is to find a
permutation of ./ contained in a set of feasible permutations F which minimizes f, i.e.,

minin4ze/@).

The problem is called unconstrained if all permutations are feasible.
The first type of constraint considered is called a precedence constraint. A job i is

said to have precedence ovet job7, written i--+j, if job i must occur before jobT in
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every feasible permutation. As an example, it is usually considered good practice to
perform the job of recording customers' payments before the job of sending out the
next month's bills in order to prevent duplicate billing (see [8, chapter l3]). These
precedence constraints will be represented by a directed precedence graph G: ("f, R),
where the nodes of G are given by the jobset "I and an arc directed from i towardT,
denoted by (i,,t), is contained in the set R if and only if i--+7.

A subgraph G' : (J', R') of G = (J, R) induced by J' e'l has R' : {<i' i> € R : i ' i
e J'j. J' e J is a job module of G : ("f, R) if for every job ft e J - J' either

(a) k --+ i for all i e J', or
(b) i --+ k fot all i e J', or
(c) k/>i a^d i/+k for all i e J'.
The term job module will also be used to refer to the subgraph induced by J'.

Precedence graphs Gt:(J1,R,) and G2:(J2, R) with JtnJz=Q are in series lf
i --+ j for every i € ,I, andT e Jr, and arc in parallel if i#i and j+i for all i e J, and
j e Jr. A precedence graph is called a chain if exactly one permutation is feasible. The
term chain will also be used for the set of jobs making up the graph and the unique
feasible permutation of the jobs. A parallel-chains precedence graph is either a chain,
or a chain in parallel with a parallel-chains precedence graph. A precedence graph is
called series-parallel if it can be reduced to a chain by the recursive replacement of
any parallel-ihains job module by a single (feasible) chain of its jobs. A detailed study
of series-parallel precedence graphs is contained in [18].

The second type of constraint considered is called acontiguity constraint.l'e J is
called a compound job if the jobs in ,/' must process consecutively in every feasible
permutation. This type of constraint might occur, for example, if a set of jobs must be
performed at a location a considerable distance from the site at which the remaining
jobs are to be performed. If, in addition, a compound job must process in a
prespecified order in every feasible permutation then we refer to it as a string. When
it.ingr are present the problem can be thought of as sequencing strings, rather than
the jobs in the strings, since they must process consecutively and in a prespecified
order in every feasible permutation. Strings are denoted by d,7, i,6 and il. Job related
notation extends to strings in the natural way, e.g., i--+7 means that string i must
precede string 7 in every feasible permutation. There is also a natural correspondence
between strings and sequences: A stringidefines a "sequence" on the jobs inFand a
sequence s which processes consecutively defines a "string" on the jobs in s'

We conclude this section by defining the least cost fault detection problem which is
used for motivation throughout this paper. In this problem a system consisting of n

components is to be inspected by sequentially applying tests to each component until
one fails (i.e., the system is "defective") or all components pass their test (i.e., the
system successfully completes inspection). Associated with each component 7 is a
testing cost c, and a probability q, of passing its test, 0 ( q, ( l. The tests are assumed
to be statisti 'caily independent aird so for any sequence i, Qi= Qs()Qse) '..%1i-ry is
the probability that the ith component in s will be tested (by conventiqn 0i: l). The
expected testing cost for a sequence s of length lc is given by Xf- 1Qic,rr. The
problem, denoted b! ZQ,ci, is to find a feasible permutation which minimizes the
expected testing cost. i.e,.

mi4imize f Q,'rnr,r.n€  F  ,1 ,

A recursive definition of the cost function/for ) Q,c,is defined on all sequences by

fU):  , i  for job7,
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and

,f(r, r) : /(t) + q(s)/(t) for sequences s and r, (l)

where q(s) : Qs(rtgse) . . .Qs&) for a sequence s of length k.

2. Unconstrained sequencing. One of the most important ideas in the theory of
sequencing and scheduling is the method of adjacent pairwise job interchange. This
method compares the costs of two sequences which differ only by interchanging a pair

of adjacent jobs. In 1956, W. E. Smith [31] defined a class of probiems for which a
total preference ordering of the jobs exists with the property that in any sequence'
wherever two adjacent jobs are not in preference order, they may be interchanged
with no resultant cost increase. As an example, define job I tc be preferable to job i'
denoted by i( 7, for ) Q,c, when c'/(l - q,) < c1/Q - tl); that is, jobs with small
costs and large probabilities of failing their tests are most preferable. (We define a/0
to be *co when a ) 0 and define it to be -oo when a ( 0. By convention, we say
that a/0: b/0 for all a )0 and b )0 and for all a ( 0 and b < 0.) The binary
preferencerelat ion 3 istransi t iae, i .e, , i<j< /c impl iesthat i(  k,andcomplete, i .e. ,
i < j, j < I or both. we apply the method of adjacent pairwise job interchange by
coniidering an arbitrary sequence (u, i , j , a); let (u , i , i, o) be obtained by interchang-
ing jobs i and7, where i (7. Using (l) we obtain that

f ( r , i , j , o ) -  f ( u , j , i , o \ :  q ( u ) ( c , I  Q i c ) -  q ( u ) ( r i +  q i r ' )

: q(u)(c,(r _ q) * cr(l _ *)) < 0.

The inequality follows since q(u) > 0,Qi ( l,q, ( I and rsi.An optimal permutation
has the jobs in preference order.

We say that a sequencing function/ satisfies the adjacent pairwise interchange (API\
propertl if there is a transitive and complete binary preference relation ( defineci on
jobs satisfying the following condition:

For all jobs i and7, i (7 implies that

f(u, i,j,a) { f(u,j, i, a) for all sequences u and o. (2)

We say that job i is strictly preferable to jobi, denoted by i ( i, if i<i butl( i
does not hold. Ajob i is minimal (maximal)with respect to ( in a set f lf i e T and
i< j (J< i) for all j eT. As the notation suggests, the relation ( on jobs shares
properties with the relation ( on real numbers. For example, i<i< k or i3i1k
implies that i( k.

We now present a theorem, due to Smith [31], which represents a fundamental
result in unconstrained sequencing.

Turonnu I (Sr'rrrH [31]). Let I satisfy the API Property. Then any permutation
satislying the following proper7) is optimal: i 1 j implies that i precedes i in the
permutqtion.

Pnoor. Let lI be a permutation of the form specified in the theorem. Such a
permutation exists since the relation ( is acyclic. It suffices to show that any
permutation fI' can be transformed into lI by a series of adjacent pairwise job

interchanges without increasing the cost. Consider a permutation[I' + fL It must be
true that lI ': (a, j, i,t:), where jobT follows job i in lI. (lf all adjacent pairs are in
the same order then lI' : n.) By the choice of fI, i ( 7. Therefore, the permutation
obtained from lI' by interchanging i and 7 has no greater cost than ftr' and has one
fewer disagreements of job order with [I. Repeated applicatron of this procedure
completes the proof. I

1 i 7
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Given an optimal permutation fI for,/ of the form specified in the theorem, fI l./'
is an optimal permutation for,/'e "/, where II l,/ ' is the permutation of '/ ' with the
jobs ordered as in fI. Another consequence of the theorem is that the Unconstrsined
Algorithm, which orders the jobs from the most preferred to the least preferred,
produces only optimal permutations. This algorithm requires O(n log n) comparisons
of the form "Is i ( 7?" which can be achieved by using a "heap" or a comparable data
structure (see [2]) to sort the jobs according to the preference relation.

Actually, Smith's original hypothesis of Theorem I required only a complete binary
preference relation ( which satisfies (2). However, for the desired permutation of the
theorem to exist, ( must be acyclic. Furthermore, if ( is acyclic then the desired
permutation fI is obtained by repeatedly sequencing next a minimal, unsequenced
job; the proof remains unchanged. A transitive and complete binary preference

relation S' which satisfies (2) is defined by i( J if and only if i precedesT in fI.
Therefore the class of problems considered by Smith is exactly those which satisfy the
API property.

3.. Parallel-chains precedence contrained sequencing. We now consider sequenc-
ing problems with parallel-chains precedence constraints and strings of jobs. "/ will be

taken to be the set of strings, rather than jobs, to be sequenced since the jobs in a

string must process consecutively and in a prespecified order in every feasible
permutation. The results of the previous section would apply in a natural way to the
problem of sequencing a set of strings without precedence constraints if a total
preference ordering existed on all sequences; simply order the strings from the most to
the least prefered. With this in mind, we say that a sequencing function / satisfies the

adjacent sequence interchange (ASI) property if there exists a transitive and complete
binary preference relation ( defined on sequences satisfying the following property:

For all sequences s and /, s ( I implies that

f(u, t, l, u) ( f(u, t, s, o) for all sequences a ando'

As an example, for lQ,c,; we define s( / if and only it f(s)/(l - q(s)) < f(t)
/(t - q(t)). We apply the method of adjacent sequence interchange by considering an
arbitrary sequence (u, s, t, o); let (u, t, s, o) be obtained by interchanging s and /,

where s ( t. Using (l),

t'"' 
:' r r",)r, 13 ., i,L,,, - q (,)t r (t)+ q ( r)/(s) l
:  q(")U('Xt -  q(t))  -  /(rXt -  q( ')) l  < 0.

The inequality follows since g(r.r) )0, q(s) ( l, g(t)( I and s( t. Thus ZQici
satisfies the ASI property.

The ASI property clearly implies the API property. One difficulty of sequencing
with precedence constraints is that a conflict exists between ordering jobs according
to the preference relation and preserving feasibility according to the precedence
constraints. The following theorem provides a means for resolving this conflict for
parallel-chains problems.

THronsu 2. Let f satisfy the ASI property. Consider aiob module {i,7} in a general
precedence graph, where i --+7 and 71i. Then there is an optimal permutation with i
immediately preceding 7.

PnooE. Every optimal permutation must be of the form (4, i "^, /, w). If u is an
empty sequence then the theorem holds. Suppose that r-r is a nonempty sequence. lf

o (  i  then interchanging i  and o does not incrcase the cost.  On the other hand, i f

. i (  o^ then /< trby transi t iv i ty;  therefore, interchangingTand t '  does not increase the



SEQUENCINGWITHSERIES-PARALLELPRECEDENCECONSTRAINTS 219

cost. Both interchanges are feasible, since {i4 is a job module, and result in
permutations of the desired form. t

The strings i and 7 of the theorem whose precedence and preference orderings
conflict can be replaced by the larger string ($ 7). This replacement resolves the
conflict and preserves an optimal permutation. This idea forms the basis for the
following algorithm for parallel-chains precedence constrainted sequencing.

Parallel- Chains A lgorit hm
Step l .  I f  i - -+T impl ies tha t i (T fo ra l l s t r ings iand/ ( i .e . ,  (  i scons is ten tw i th

-+) then go to Step 2. If not, there is a job module {d,4, where d--+7 and 7( i.
Replace d and 7by the string (i, I and repeat Step l.

Step 2. Sort the strings according to the preference relation.

Step I of the Parallel-Chains Algorithm is justified by Theorem 2. Any preference
ordering produced by Step 2 is optimal to the unconstrained problem defined on the
strings produced in Step l; it is also feasible to the precedence constraints and
therefore is optimal for the parallel-chains precedence constrarned problem.

We say that an algorithm for a parallel-chains precedence constrained sequencing
problem is qssociatiae when the following condition holds for all parallel-chains
precedence graphs Gr: (Jy R,) and G2: (J2, Rr): If the algorithm prcduces optimal
permutations fI, and fI, for G, and Gr, respectively, then there is an optimal
permutation fI for G, in parallel with G, satisfying nr:I l"/, and Ilr:fJlJ2.

Tnronnu 3. The Parallel-Chains Algorithm is associatioe.

Pnoor. Let Gr: (/r, Rr) and Gr: (Jz, R) be parallel-chains precedence graphs.
Step I of the Parallel-Chains Algorithm is applied to each chain independently and
produces the same result when applied to G, in parallel with G, as when it is applied
to each separately. A minimal job in Step 2 for G, in parallel with G, is either minimal
in G, or minimal in Gr. Hence, the optimal permutations fI, and fI, produced by the
Parallel-Chains Algorithm for G, and G2, respectively, can be merged into an optimal
permutation for G, which is of the desired form. I

Conorrenv 4. Let Gr: ("/,, R,) and Gr: (Jr, Rr) be parallel-chains precedence
graphs. If n is an optimal permutation for G, in parallel with G2 produced by the
Parallel-Chains Algorithm then fI I J, and fI I J, are optimol permutations for G, and
G2, respectioely.

4. Series-parallel precedence constrained sequencing. We now consider the
sequencing problem with series-parallel precedence constraints and compound jobs.
We say that a sequencing function/satisfies the series-network decomposition (SND)
property if the following condition holds for all permutations s and r of the same
jobset:

If/(s) < f(r) then/(u, s, o) ( f(r, t,u) for all sequences u and p.
The SND property implies that if fI, and TI, are optimal permutations for

Gt:(Jr Rt) and Gz:(Jz, R2) then (tr , ,  t rJ is an opt imal permutat ion for G, in
series with Gr. That is, a precedence graph can be decomposed into its series
components, each of which can be independently solved.

As an example, lQ,c,satisfies the SND property. To see this, consider s and I to be
permutations of the same set (note that q(s): q(t)) and consider u and c to be
arbitrary sequences. Using (l), if /s) < /(r) then

f (" ,  ' ,  t )  -  J@. t ,  t ' )  :  q(u)(f( ' )  -  / ( / ))  < 0.

The inequality follows, since g(u) ) 0.
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Txeonnu 5. IEt I satisfy the SND property. Consider a compouttd iob T e J in an

arbitrary precedence graph G:(J, R), where t is an optimal permutation for T. Then

there is an optimal permutation fI for J satisfying t :fl I T.

Pnoor. Any optimal permutation for"I must be of the form (u,s,o), where s is a

feasible permutation of ?". Nowflt) < /(s) implies by the SND property that (u, t, o)
is an optimal permutation of the desired form. I

The previous theorem implies that a compound job can be replaced by a string

corresponding to any optimal permutation for it when the SND property holds.

Henceforth, we assume that compound jobs have been "preprocessed" and replaced

by strings. We now use the SND property to efficiently extend an associative
parallel-chains algorithm to solve the series-parallel precedence constrained problem.

Tnnoneu 6. Let f satisfy the SND property ond suppose we are gioen an associatioe

parallal-chains algorithm for f . Consider T e J which forms a parallel'chains iob'in 
a general precidence graph G: (,I, R), where t is an optimal permutation Produc:d.by

the ilgorithm for T. Then-there is an optimal permutationllfor J satisfying t:fllT.

Pnoor. An optimal permutation for./ must be of the form

i l : ( t r  |  U , ,  t r  |  T , ,  n  I  Ur ,n lTr , . . . ,  i l  I  4 ,  i l  |  4* t ) ,

where
(l) Tp 72, . . . , T, partitions T, and
(2\ IJp L12,. .., U,*r partitions U = J - T-

Using a proof technique developed in [28], [30] we consider the precedence graph

G,=(J,R'), where R'contains all of the constraints in R plus additional ones so

that:
(l') the subgraph induced by U, is in series with the subgraph induced by

(J - Ur- U,+,) which, in turn, is in series with the subgraph induced bY U,*ri and

(2') the subgraph of G' induced by t/ is the chain corresponding to the permuta-

tion II I U.
G is a relaxation of G'and fI is feasible to G'; therefore fI is an optimal

permutation for G'.
Using the SND property we obtain a new optimal pennutation by replacing

III I (.1 IJt - 4*,) by any optimal permutation for the subgraph of G' induced by

(J  -  Ur -  U,+r ) .
By (f) and,(2,), the subgraph of G'induced by (/ - Ut- 4*,) is a parallel-chains

prri.d.tr". graph consisting of I in parallel with the chain n l(U - Ur- U,*r).

3ince the parallel-chains algorithm is associative, T may be replaced by any optimal

permutati;n generated by the algorithm for T. This yields the desired optimal

permutation. I
The previous theorem implies that a parallel-chains job module in an arbitrary

precedence graph can be replaced by a single feasible chain produced by an associa-

tive parallel-chains algorithm; this replacement preserves an optimal permutation. A

series-parallel precedence graph, by definition, can be reduced to a single chain by

repeating suctr a process. We call the algorithm to accomplish this reduction the

Series- Parql Ie I A lgorit hm.
The Parallel-Clains Algorithm is associative by Theorem 3 and produces optimal

permutations for sequencing functions which satisfy the ASI property by Theorem 2.

Therefore, a corollary of Theorem 6 is that the Series-Parallel Algorithm using the

Parallel-Chains Algorithm produces optimal permutations for the series-parallel pre-

cedence constrained problem when the sequencing function satisfies the ASI and

SND properties. An implementation of this algorithm requires O(n log n) compari-

,on, of ih. for.n "ls s ( l?". This time bound assumes that the series-parallel
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precedence graph is specified by a "decomposition tree" as defined in [5]. The
algorithm is a modification of one presented in [6] for the one-machine total
weighted completion time problem with series-parallel precedence constraints. See [23]
for the details of this implementation.

5. Example problems. In this section we present seyeral widely studied problems
which satisfy the ASI and SND properties.

(l) In the one-machine total weighted completion time problem n jobs are to be
sequenced on a single machine; each jobT requires4 ) 0 time units of processing. For
any sequence s let Ci :>j-r Ag1 denote the completion time of the ith job in the
sequence s. Each job 7 also has a weighting factor w, and incurs a linear cost of w,
times its completion time, i.e., the cost of a sequence s of length k is )f=, w"1aC,r. The
problem, denoted by Xr,C,, is to find a feasible permutation to minimize the total
weighted completion time, i.e.,

minimjze i rn,oQn.
rl€r' Et

A recursive definition of the cost function f for)w,C, is defined on all sequences by

IU): Piwi for job7, and

f(t, t): "f(s) + f (r) + p(s)w(t) for sequences s and r, (3)

where p(s) : )f- , p"6 and )v(t) : E j: r w,to for sequences s and I of lengths k and I,
respectively. Using (3) it is easy to verify the ASI and SND properties, where s ( I if
and only If w(s\/ p(s) > w(t)/ p(t).

(2) For the maximum cumulative excess cost problem consider a single item
inventory system. A set of n transactions are to be posted against the inventory. Each
transaction performs a fixed sequence of deposits and withdrawals. The relevant data
for transactionT is summarized in its net change in inventory level, ci, its maximum
net increase in inventory level, m,, and its "targel" level, e,. The procesding of a typical
jobT is il lustrated in Figure L For any sequence s, define CC::>i:\qt* m"roto
be the maximum level attained by the ith job in the sequence s (by convention
CCi: n"1r).The cost for a sequence s of length k is maximufir<i<r {CCi - e,6r}.
The problem, denoted by CE^^*, is to find a feasible permutation to minimize the
maximum cumulative excess cost of a transaction above its target level, i.e.,

minimize *?il1l^ {cq" 
- en<ir}.

Invenlory
level

Moximum

Finol

I n i l i o l

forget
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FrcuRE L Typical job for excess cost problem.
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A recursive definition of the cost function f f.or CE^^* is defined on all sequences by

f (i) : mj - ej for jobT and

.f(t, r) : max(/(s), c(s) + /(r)) for sequences s and t, (4)

where c(s) : Xf= r c",,, for a sequence s of length k.
Using (4) iiis easy io verify the ASI and SND properties, where s S I if and only if

(a) c(s) ( 0 and c(r) ) 0; or
(b) c(s) ( 0, c(t) ( 0 and/(r) < ,f(r); or
(c) c(s) ) 0, c(t) ) 0 and c(s) - /(s) < c(t) - f(t).
Johnson's [0] two-machine maximum completion time flow-shop problem (c-"J

and the maximum cumulative cost problem (CC-J [2]' [3] are shown to be special

cases of CE^ * in [22].
(3) The maximum cost fault detection problem is similar to lQtc,: the saz cost

function is replaced by the maximum cost function. That is, the cost of a sequence s of

length ft is maximuftr<,<r {9,"c"(0}.The problem, denoted by Q*, is to find a

feasible permutation which minimiles the maximum expected component testing cost,

i'e" 
*,#,Jll'" -?.111:*?,ncn1i).

A recursive definition of the cost function / for Qn'u* is defined on all sequences by

f( j \ :c i  for jobl ,  and

.f(t, l) : max(/(s)' q(t)/(t)) for sequences s and t' (5)

Using (5) it is easy to verify the ASI and SND properties, where s ( t if and only if

(a) /(r) < 0 and/(t) ) 0, or
(b) /(") < 0,.f(r) < 0 and f(s\/ q(s) > f(t)/ q(r), or
(c) /(')> 0,f(t) >0 and/(s) < /(0.
(4) The totai weighted exponential completion time problem is similar to lwtCt:

cost accumulates exponentially rather than linearly. The cost of a sequence s of length

/c is )f-, wuoexp(-rC,J), where r)0 is a constant. The problem, denoted by

2r,e*p(-rC), is to find a feasible permutation which minimizes the total weighted

exponential completion time. i.e.,

mininlze f ,,r1a"*p( -rC,n).

This problem is a special case of ZQ,c,. To see this we note that given a jobT for

!tu,exp(-rC,), defined by pi) 0, w, and r ) 0, we can construct a job i fot 7Qici,
*he.. q,: exp(- rp,) and i,: *,eip(-rp,), in such a way that the cost of any

sequenct is the same for botli problems. JobT is a valid job for )Q,c, since 0 I q, 4 l.

A converse statement also holds: Given the data g 1{t ( I and c, for lQ,ct we may

const ruc t  a  job  j  fo r  )w,exp( - rC, ) ,wherepr -  
- log  q t>0 ,wr :  c r /q randr :  I  )0 '

in such a way that the cost of any sequence is the same for both problems.
Table I summarizes the known results for the example problems defined in this

paper. The general precedence constrained 2w,C, and CE^u* problems are NP Hard,
in the sense of Cook [6] and Karp I l].

The reader may easily add new problems to this list by simply verifying the ASI
and SND properties. Given a sequencing function / which satisfies the ASI and SND
properties it is possible to construct a new sequencing function /' which also satisfies
these properties. One simple example of this is to take f'(t): 

-fis) for all sequences
s. Using the definition of the ASI property it is easy to show that f' satisfies the ASI
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!t p"rty usrng s('r if and only if r( r, where ( is a binary preference relation for
/' This implies that the pro-bl_em of finding a ma-rimum cosr permutation sarisfies theASI property. variations of the examples iited can also be easily sho*n to satisfy theASI and SND properties. Exampres are the sequencing function for )w,C, il.;;;
!3ll 

*h.tt: ,r.>-0 u.19 4; is unconstrained for all jobJ;, ,atfre. tfran p,)0 and r+,.unconstrained for all jobsT; and, the sequencing functions for le,c, "iif 0o.". g*.r{

H"!?*:il5), 
where c,)0 and Ii)0 for a[lobs7, rather tfi'un oq ? < I and 9

TABLE I
Summary of computational comptex ity

f Unconstrained Chains/Tree Series-Parallel General Precedence

2er,
)wrexp(- rC,)

X,,c,

at*

[20]
126l
[3U

17l

t4l, t5l, tel,
[27],[281

IrTl
u3l I16]

Open hoblem

Open Problem

NP Hard tl6l [9]

cnu [l01 c-", [41 ccn* [2] [3]
cns [21], [30]

CCnu NP Hard [lJ
C-* NP Htrd[221

5' Concluding remarks. We defined a class of problems based on easily verifiableproperties. These were solved with series-paralGl precedence constraints by anefficient general algorithm. This algorithm uses information about the cost functiononly through the preference order defined on the elements to be sequenced. That is,only ordinal data is necessary to solve these proble ms. Cardinal data values aresuperfluous' This class of problems is studied wiih general precedence constraints in
l23l and [2a].

- The ASI property is one natural extension of the API property. other extensions,
for example, considering pairwise (not necessarily adjaceni) job interchanges and theinsertion of a job into another posiiion in a sequence, are examined in [23J. These leadto efficient algorithms for sequencing with general. precedence constraints and se-condary criteria problems.

The reader may easily verify that even though the Series-parallel Algorithm
gro-luces only optimal sequences, it can not producJ ail optimal sequences in general.
In [23] stronger versions of the ASI and SNb properties are defined which lead to aversion of the Series-Parallel Algorithm which can produce a sequence if and only ifthe sequence is optimal. These stronger properties are satisfied by )r,c, *t.r"a > o,and by ZQ,c, where 0 1q,<-1.

References
[ll Abdel-wahab' H' M' (19?6) scheduling with Applications to Register Allocarion and DeadlockProblems. Ph.D. thesis, University of Waterloo, Waterloo, Canada.
121 -- and Kameda, T. (1978). scheduling to Minimize Maximum cumulative cost Subject toSeries-Parallel Precedence Constraints. Operations Res. 26 l4l_l 5g.
l3l -- and -' (1978). on the c-bptimal Scheduling Problem. Department of ElectricalEngineering, University of Waterloo, Wateiloo, Canada.
[4f Adolphson, D. L' and H.y, T. c. (1973). optimal Linear orderin g. sIArvI J. Appr. Math. 2s {)3423.
l5l Conway, R. W., Maxwell, W. L. and Miier, L. W. (1967). fhiory of Schreduting. Addison-Wesley.Reading, Massachusetts.

Cook, S' A' (1971). The Complexity of Theorem-Proving Procedures. ln proc. Third Annuat ACM
!lW. y the Theory ol Computing, l5l-15g, Shaker Heighrs, Ohio.
larey' M' R' (1973). optimal rasl sequencing with Precedence constrainrs. Discrete Math.4 j7-56.
Hemot, J. (1972)- Ail Crearures Great and smail. Banram Books, Inc.. New york.

t6l

I7l
I81



224 CLYDE L, MONMA AND JEFFREY B. SIDNEY

[9] Horn, W. A. (1972). Single-Machine Job Sequencing with Treelike Precedence Ordering and Linear

Delay Penalties. SIAM J. Appl. Math.23 lE9-202.

[10] Johnson, S. M. (1954). Optimal Two- and Three-Stage Production Schedules with Setup Times

Included. Nawl Res. Logist. Quart. I 6l-68.
Karp, R. M. (1975). On the Computational Complexity of Combinatorial Problems. Nelworks. S

tH8.
Knuth, D. E. (1973). The Art of Computer Programming, Yol. 3: Sorting and Searching. Addison-
Wesley, Reading Massachusetts.

(1973). Private communication to T. C. Hu, July 23, 1973.
Kurisu, T. (1976). Two-Machine Scheduling under Required Precedence among Jobs. J. Operations
Res. Soc. Japan. 19 l-13.

Lawler, E. L. (1976)'. Graphical Algorithms and Their Complexity. Math. C,enre Tracts 81. University

of California at Berkeley, 3-32.
-. (19?E)" Sequencing Jobs to Minimize Total Weighted Completion Time Subject to Prece-
dence Constraints. Ann. Discrete Math. ll 75-90.

- and Sivaslian, B. D. (1978). Minimization of Time Varying Cpsts in Single Machine

Sequencing. Operations rRes. 2.6 563-569.
Tarjan, R. E. and Valdez, J. (to appear). Analysis and Isomorphism of Series-Parallel

Diagraphs.
I-enstra, J. K., Rinnooy Kan, A. H. G. and Brucker, P.(1977). Complexity of Machine scheduling
Problcms. Ann Discrete Math, l343-362.

Mitten, L. G. (19CI), An Analytic Solution to the Least Cost Testing Sequence Problem. J. Industdal

Engineering. ll 17.
Monma, C. L, (to appear). Two-Machine Flow-Shop Problem with Series-Parallel Precedence

Relations: An Algorithm and Extensions. Operations Res.
(1978). Sequencing to Minimize the Maximum Job Cost. Submitted for publication.
(1978). Properties and Efficient Algorithms for Certain Classes of Sequencing Problems.

Ph.D. thesis, School of OR/IE, Cornell University, Ithaca, New York.
(1979). Sequencing with General Precedence Constraints. Submitted for publication.

- and Sidney, J. B. (19??). A General Algorithm for Optimal Job Sequencing with Series-

Parallel Precedence Constraints. Report 347. School of OR/IE, Cornell University, Ithaca, New

York.
Rothkopf, M. E. (1966). Scheduling Independent Tasks on Parallel Processors. Marugement Sci. 12

437-447.
Sidney, J. B. (19?0). Single-Machine Deterministic Job-Shop Sequencing with Precedence Relations
and Deferral Costs. Ph.D. thesis, University of Michigan.

(19?5). Decomposition Algorithms for Single Machine Sequencing with Precedence Relations

and Deferral Costs. Operations Res.23 283-298.
(1976). A General Algorithm for Optimal Job Sequencing with Parallel-Chains Precedencc

Constraints. University of Ottawa, Ottawa, Canada.
(19?9). The Two-Machine Flow Time Problem with Series-Parallel Precedence Constraints.

Operations Res.27.
Smith, W. E. (1956). Various Optimizers for Single-Stage Production. Naul Res. Logist. Quart. S

5946.

MONMA: BELL LABORATORIES, HOLMDEL, NJ 07733
SIDNEY: FACULTY OF ADMINISTRATION, UNIVERSITY OF OTTAWA, OTTAWA, ONTAR-

IO, CANADA KIN 6N5

Note added in proof. It has recently been pointed out to us by E. L. Lawler that the

Series-Parallel Algorithm using the Paraltel-Chains Algorithm works when only the ASI
property holds. That is, the SND property is not needed.
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