MATHEMATICS OF OPERATIONS RESEARCH
Vol. 4, No. 3, August 1979
Printed in USA.

SEQUENCING WITH SERIES-PARALLEL PRECEDENCE
CONSTRAINTS*

CLYDE L. MONMAT§ anp JEFFREY B. SIDNEY}

One of the most important ideas in the theory of sequencing and scheduling is the method
of adjacent pairwise job interchange. This method compares the costs of two sequences which
differ only by interchanging a pair of adjacent jobs. In 1956, W. E. Smith defined a class of
problems for which a total preference ordering of the jobs exists with the property that in any
sequence, whenever two adjacent jobs are not in preference order, they may be interchanged
with no resultant cost increase. In such a case the unconstrained sequencing problem is easily
solved by sequencing the jobs in preference order.

In this paper, a natural subclass of these problems is considered for which such a total
preference ordering exists for all subsequences of jobs. The main result is an efficient general
algorithm for these sequencing problems with series-parallel precedence constraints. These
problems include the least cost fault detection problem, the one-machine total weighted
completion time problem, the two-machine maximum completion time flow-shop problem
and the maximum cumulative cost problem.

Introduction. In this paper we introduce a class of problems based on easily
verifiable properties. This class includes many widely-studied problems; for example,
Johnson’s [10] classical two-machine maximum completion time flow-shop problem,
the one-machine total weighted completion time problem, the maximum cumulative
cost problem and the least cost fault detection problem. An efficient general algorithm
is derived for solving these problems with series-parallel precedence constraints. This
unifies the recent results by Sidney [30], Lawler [16] and Abdel-Wahab and Kameda
[2], [3], and extends a result by Garey [7].

1. Basic definitions and notation. A job is the basic unit of work to be sequenced.
Each job is characterized by certain parameters; for example, in the total weighted
completion time problem a job is specified by a weighting factor and a nonnegative
processing time. We assume given a set J = (1,2, ..., n} of jobs to be sequenced. A
sequence s of k jobs is a function from {(1,2,..., k) to J and is represented by
(s(1), 5(2), . . ., s(k)), where s(i) is the ith job in the sequence s. A job may appear
several times, or not at all, in a sequence. Multiple occurrences of the same job are
considered to be duplicate copies of that job, ie., they have the same parameter
values. Sequences are denoted by the lower case letters s, ¢, u, v and w. A permutation
of J is denoted by II. A sequencing or cost function assigns a real value or cost to each
sequence. :

A sequencing problem, on a set of jobs J with cost function f, is to find a
permutation of J contained in a set of feasible permutations F which minimizes f, i.e.,

e m.
mlglen}lzef()

The problem is called unconstrained if all permutations are feasible.
The first type of constraint considered is called a precedence constraint. A job i is
said to have precedence over job j, written i —j, if job i/ must occur before job j in

* Received September 6, 1977; revised September 18, 1978.

AMS 1970 subject classification. Primary 90B35.

IAOR 1973 subject classification. Main: Scheduling.

Key words. Scheduling, sequencing, series-parallel precedence constraints, unified algorithm, one and two
machine cases, least-cost fault detection.

T Cornell University.

§ Monma’s work was partially supported by NSF Grant ENG 76-09936.

¥ University of Ottawa.

215
0364-765X /79,/0403 /0215801.25

Copyright © 1979, The Institute of Management Sciences

216 CLYDE L. MONMA AND JEFFREY B. SIDNEY

_ every feasible permutation. As an example, it is usually considered good practice to
perform the job of recording customers’ payments before the job of sending out the
next month’s bills in order to prevent duplicate billing (see [8, chapter 13]). These
precedence constraints will be represented by a directed precedence graph G = (J, R),
where the nodes of G are given by the jobset J and an arc directed from i toward j,
denoted by (i,), is contained in the set R if and only if i —.

A subgraph G' = (J', R") of G =(J, R) induced by J' CJ has R" = {{i,j) ER : i,]
€J'}.J' CJ is a job module of G = (J, R) if for every job k € J — J' either

(@) k—oiforalli€J’, or

() i—»kforalli€J’, or

(¢) kpiandipkforalli€J’.

The term job module will also be used to refer to the subgraph induced by J'.
Precedence graphs G, =(J,, R,) and G, = (J,, Ry with J,NJ, =@ are in series if
i—j for every i €J, and j € J,, and are in parallel if i>j and j#»i for all i € J, and
j € J,. A precedence graph is called a chain if exactly one permutation is feasible. The
term chain will also be used for the set of jobs making up the graph and the unique
feasible permutation of the jobs. A parallel-chains precedence graph is either a chain,
or a chain in parallel with a parallel-chains precedence graph. A precedence graph is
called series-parallel if it can be reduced to a chain by the recursive replacement of
any parallel-chains job module by a single (feasible) chain of its jobs. A detailed study
of series-parallel precedence graphs is contained in [18].

The second type of constraint considered is called a contiguity constraint. J' C J is
called a compound job if the jobs in J' must process consecutively in every feasible
permutation. This type of constraint might occur, for example, if a set of jobs must be
performed at a location a considerable distance from the site at which the remaining
jobs are to be performed. If, in addition, a compound job must process in a
prespecified order in every feasible permutation then we refer to it as a string. When
strings are present the problem can be thought of as sequencing strings, rather than
the jobs in the strings, since they must process consecutively and in a prespecified
order in every feasible permutation. Strings are denoted by ¥, 7, %, © and w. Job related
notation extends to strings in the natural way, e.g., s—7 means that string 5§ must
precede string 7 in every feasible permutation. There is also a natural correspondence
between strings and sequences: A string § defines a “sequence” on the jobs in 5’ and a
sequence s which processes consecutively defines a “string” on the jobs in s.

We conclude this section by defining the least cost fault detection problem which is
used for motivation throughout this paper. In this problem a system consisting of n
components is to be inspected by sequentially applying tests to each component until
one fails (i.e., the system is “defective”) or all components pass their test (i.e., the
system successfully completes inspection). Associated with each component j is a
testing cost ¢; and a probability g; of passing its test, 0 < ¢; < 1. The tests are assumed
to be statisticaily independent and so for any sequence s, Q] = ¢,1)9s2) - - - Isi—1) 15
the probability that the ith component in s will be tested (by convention Q5 = 1). The
expected testing cost for a sequence s of length k is given by D Q’cyiyr The
problem, denoted by 3 Qc;, is to find a feasible permutation which minimizes the
expected testing cost, i.e.,

n
. . . n
minimize - Crie)-
Her igl Ql nG)

A recursive definition of the cost function f for 3 Q;c; is defined on all sequences by

f(j)=¢ forjobj,

~J

SEQUENCING WITH SERIES-PARALLEL PRECEDENCE CONSTRAINTS 21

and
f(s, 1) = f(s) + q(s)f(¢) for sequences s and ¢, 6))
where ¢(s) = ¢,y9s(2) - - - 9sxy fOT @ sequence s of length k.

2. Unconstrained sequencing. One of the most important ideas in the theory of
sequencing and scheduling is the method of adjacent pairwise job interchange. This
method compares the costs of two sequences which differ only by interchanging a pair
of adjacent jobs. In 1956, W. E. Smith [31] defined a class of problems for which a
total preference ordering of the jobs exists with the property that in any sequence,
wherever two adjacent jobs are nor in preference order, they may be interchanged
with no resultant cost increase. As an example, define job i to be preferable to job j,
denoted by i < j, for 3 Q;c; when ¢;/(1 — ¢) < ¢;/(1 — ¢;); that is, jobs with small
costs and large probabilities of failing their tests are most preferable. (We define a/0
to be + oo when a > 0 and define it to be —oco when a < 0. By convention, we say
that a/0=5b/0 for all >0 and b >0 and for all 2 <0 and b <0.) The binary
preference relation < is transitive, i.¢., i < j< k implies that i € k, and complete, i.c.,
i< j, i< 1 or both. We apply the method of adjacent pairwise job interchange by
considering an arbitrary sequence (4, i, j, v); let (u, j, i, v) be obtained by interchang-
ing jobs i and j, where i < j. Using (1) we obtain that

f(u, i, j, 0) = f(u, j, i, ©) = g(u)(c; + g;¢;) — q(u)(¢; + g;c)
= g(u)(c(1 - g) = ¢(1 = 4)) <O.

The inequality follows since g(u) > 0,¢; < 1, ¢, < l and i < j. An optimal permutation
has the jobs in preference order.

We say that a sequencing function f satisfies the adjacent pairwise interchange (API)
property if there is a transitive and complete binary preference relation < defined on
jobs satisfying the following condition:

For all jobs i and j, i € j implies that

f(u, i, j, v) < f(u,j, i,v) for all sequences u and v. 2)

We say that job i is strictly preferable to job j, denoted by i< j, if i< j but j< i
does not hold. A job i is minimal (maximal) with respect to < inaset T if i € T and
i<j(j< i) for all j € T. As the notation suggests, the relation < on jobs shares
properties with the relation < on real numbers. For example, i< j< kori< j<k
implies that i < k.

We now present a theorem, due to Smith [31], which represents a fundamental
result in unconstrained sequencing.

THEOREM 1 (SmitH [31]). Let f satisfy the API property. Then any permutation
satisfying the following property is optimal: i< j implies that i precedes j in the
permutation.

ProOF. Let IT be a permutation of the form specified in the theorem. Such a
permutation exists since the relation < is acyclic. It suffices to show that any
permutation IT' can be transformed into IT by a series of adjacent pairwise job
interchanges without increasing the cost. Consider a permutation IT" # II. It must be
true that IT" = (u, j, i, v), where job j follows job i in IT. (If all adjacent pairs are in
the same order then II' = I1.) By the choice of II, i < j. Therefore, the permutation
obtained from IT" by interchanging i and j has no greater cost than II" and has one
fewer disagreements of job order with II. Repeated application of this procedure
completes the proof. a

218 CLYDE L. MONMA AND JEFFREY B. SIDNEY

Given an optimal permutation IT for J of the form specified in the theorem, II | J*
is an optimal permutation for J* C J, where IT | J is the permutation of J* with the
jobs ordered as in I1. Another consequence of the theorem is that the Unconstrained
Algorithm, which orders the jobs from the most preferred to the least preferred,
produces only optimal permutations. This algorithm requires O(n log n) comparisons
of the form “Is i € j?” which can be achieved by using a “heap” or a comparable data
structure (see [12]) to sort the jobs according to the preference relation.

Actually, Smith’s original hypothesis of Theorem 1 required only a complete binary
preference relation < which satisfies (2). However, for the desired permutation of the
theorem to exist, € must be acyclic. Furthermore, if < is acyclic then the desired
permutation IT is obtained by repeatedly sequencing next a minimal, unsequenced
job; the proof remains unchanged. A transitive and complete binary preference
relation <’ which satisfies (2) is defined by i< ’j if and only if i precedes j in IL
Therefore the class of problems considered by Smith is exactly those which satisfy the
API property.

3.. Parallel-chains precedence contrained sequencing. We now consider sequenc-
ing problems with parallel-chains precedence constraints and strings of jobs. J will be
taken to be the set of strings, rather than jobs, to be sequenced since the jobs in a
string must process consecutively and in a prespecified order in every feasible
permutation. The results of the previous section would apply in a natural way to the
problem of sequencing a set of strings without precedence constraints if a total
preference ordering existed on all sequences; simply order the strings from the most to
the least prefered. With this in mind, we say that a sequencing function f satisfies the
adjacent sequence interchange (ASI) property if there exists a transitive and complete
binary preference relation < defined on sequences satisfying the following property:

For all sequences s and ¢, s < ¢ implies that

f(u, s, t,v) < f(u, t,s,0v) for all sequences u and v.

As an example, for S Q;c;; we define s< ¢ if and only if f(s)/(1 — q(s)) < f(9)
/(1 — g(t)). We apply the method of adjacent sequence interchange by considering an
arbitrary sequence (u, s, 1, v); let (u, t, s, v) be obtained by interchanging s and ¢,
where s < ¢. Using (1),

fu, 5, t, 0} = f{16,4.8, 0)
= W[f(s) + ¢()f (D] = 9 f()) + 9(1)f(9)]
= g f(5)(1 = ¢(1) = f()(1 — g(s))] < 0.
The inequality follows since g(u) >0, q(s)< 1, g(f) <1 and s< . Thus Qi
satisfies the ASI property.

The ASI property clearly implies the API property. One difficulty of sequencing
with precedence constraints is that a conflict exists between ordering jobs according
to the preference relation and preserving feasibility according to the precedence

constraints. The following theorem provides a means for resolving this conflict for
parallel-chains problems.

THEOREM 2. Let f satisfy the ASI property. Consider a job module {5, T} in a general
precedence graph, where §—7T and T< 5. Then there is an optimal permutation with s
immediately preceding 1.

Proor. Every optimal permutation must be of the form (u, s, v, 7, w). If v is an
empty sequence then the theorem holds. Suppose that v is a nonempty sequence. If
v< § then interchanging 5 and v does not increase the cost. On the other hand, if
§< v then 7< ¢ by transitivity; therefore, interchanging 7 and v does not increase the

SEQUENCING WITH SERIES-PARALLEL PRECEDENCE CONSTRAINTS 219

cost. Both interchanges are feasible, since (5,7} is a job module, and result in
permutations of the desired form. &

The strings 5 and 7 of the theorem whose precedence and preference orderings
conflict can be replaced by the larger string (5, 7). This replacement resolves the
conflict and preserves an optimal permutation. This idea forms the basis for the
following algorithm for parallel-chains precedence constrainted sequencing.

Parallel-Chains Algorithm

Step 1. If §—7 implies that 5 < 7 for all strings 5 and 7 (i.e,, < is consistent with
—) then go to Step 2. If not, there is a job module (5,7}, where §—7 and 7< 5.
Replace 5 and 7 by the string (5, 7) and repeat Step 1.

Step 2. Sort the strings according to the preference relation.

Step 1 of the Parallel-Chains Algorithm is justified by Theorem 2. Any preference
ordering produced by Step 2 is optimal to the unconstrained problem defined on the
strings produced in Step I; it is also feasible to the precedence constraints and
therefore is optimal for the parallel-chains precedence constrained problem.

We say that an algorithm for a parallel-chains precedence constrained sequencing
problem is associative when the following condition holds for all parallel-chains
precedence graphs G, = (J,, R)) and G, = (J,, R,): If the algorithm produces optimal
permutations II, and II, for G, and G,, respectively, then there is an optimal
permutation II for G, in parallel with G, satisfying IT, =11 | J, and I, =11 | J,.

THEOREM 3. The Parallel-Chains Algorithm is associative.

Proor. Let G, =(J,, R)) and G, = (J,, R,) be parallel-chains precedence graphs.
Step 1 of the Parallel-Chains Algorithm is applied to each chain independently and
produces the same result when applied to G, in parallel with G, as when it is applied
to each separately. A minimal job in Step 2 for G, in parallel with G, is either minimal
in G, or minimal in G,. Hence, the optimal permutations IT, and IT, produced by the
Parallel-Chains Algorithm for G, and G,, respectively, can be merged into an optimal
permutation for G, which is of the desired form. &

CoRrROLLARY 4. Let G, =(J, R)) and G, = (J,, R,) be parallel-chains precedence
graphs. If 11 is an optimal permutation for G, in parallel with G, produced by the
Parallel-Chains Algorithm then 11 | J, and 11 | J, are optimal permutations for G, and
G,, respectively.

4. Series-parallel precedence constrained sequencing. We now consider the
sequencing problem with series-parallel precedence constraints and compound jobs.
We say that a sequencing function f satisfies the series-network decomposition (SND)
property if the following condition holds for all permutations s and ¢ of the same
jobset:

If f(s) < f(¢) then f(u, s, v) < f(u, t, v) for all sequences « and v.

The SND property implies that if II, and II, are optimal permutations for
G, =(J;, R) and G, = (J, R,) then (II,, IL,) is an optimal permutation for G, in
series with G,. That is, a precedence graph can be decomposed into its series
components, each of which can be independently solved.

As an example, ¥ Q,c; satisfies the SND property. To see this, consider s and 7 to be
permutations of the same set (note that g(s) = g(7)) and consider u and v to be
arbitrary sequences. Using (1), if f(s) < f(¢) then

f(u, 5. 0) = f(u. 1, v) = q(u)(f(5) = (1)) < 0.

The inequality follows, since g(u) > 0.

220 CLYDE L. MONMA AND JEFFREY B. SIDNEY

THEOREM 5. Let f satisfy the SND property. Consider a compound job T C J in an
arbitrary precedence graph G = (J, R), where t is an optimal permutation for T. Then
there is an optimal permutation 11 for J satisfying t =11 | T.

PROOF. Any optimal permutation for J must be of the form (u, 5, v), where s is a
feasible permutation of T. Now f(f) < f(s) implies by the SND property that (v, ¢, v)
is an optimal permutation of the desired form. &

The previous theorem implies that a compound job can be replaced by a string
corresponding to any optimal permutation for it when the SND property holds.
Henceforth, we assume that compound jobs have been “preprocessed” and replaced
by strings. We now use the SND property to efficiently extend an associative
parallel-chains algorithm to solve the series-parallel precedence constrained problem.

THEOREM 6. Let f satisfy the SND property and suppose we are given an associative
parallal-chains algorithm for f. Consider T C J which forms a parallel-chains job module
in a general precedence graph G = (J, R), where 1 is an optimal permutation produced by
the algorithm for T. Then there is an optimal permutation 11 for J satisfying t = T

PROOF. An optimal permutation for J must be of the form
B= @MU P [U, B | T, o .. D BIIPPO)

where
(1) T4 7, . i 3 T, pasiitions T, and
@ U,U,..., U, partitions U=J — T.

Using a proof technique developed in [28], [30] we consider the precedence graph
G’ =(J, R"), where R’ contains all of the constraints in R plus additional ones so
that:

(1) the subgraph induced by U, is in series with the subgraph induced by
(J — U, — U, ,) which, in turn, is in series with the subgraph induced by U, . ; and

(2') the subgraph of G’ induced by U is the chain corresponding to the permuta-
tion IT | U.

G is a relaxation of G’ and II is feasible to G’; therefore Il is an optimal
permutation for G'.

Using the SND property we obtain a new optimal permutation by replacing
II|(J— U, — U, by any optimal permutation for the subgraph of G’ induced by
(o ly—=)

By (1) and (2'), the subgraph of G’ induced by (J/ — U, — U,,) is a parallel-chains
precedence graph consisting of 7T in parallel with the chain I | (U — U, — U .3)
Since the parallel-chains algorithm is associative, T may be replaced by any optimal
permutation generated by the algorithm for 7. This yields the desired optimal
permutation. §

The previous theorem implies that a parallel-chains job module in an arbitrary
precedence graph can be replaced by a single feasible chain produced by an associa-
tive parallel-chains algorithm; this replacement preserves an optimal permutation. A
series-parallel precedence graph, by definition, can be reduced to a single chain by
repeating such a process. We call the algorithm to accomplish this reduction the
Series-Parallel Algorithm.

The Parallel-Chains Algorithm is associative by Theorem 3 and produces optimal
permutations for sequencing functions which satisfy the ASI property by Theorem 2.
Therefore, a corollary of Theorem 6 is that the Series-Parallel Algorithm using the
Parallel-Chains Algorithm produces optimal permutations for the series-parallel pre-
cedence constrained problem when the sequencing function satisfies the ASI and
SND properties. An implementation of this algorithm requires O(n log n) compari-
sons of the form “Is s< ¢?”. This time bound assumes that the series-parallel

SEQUENCING WITH SERIES-PARALLEL PRECEDENCE CONSTRAINTS 221

precedence graph is specified by a “decomposition tree” as defined in [15]. The
algorithm is a modification of one presented in [16] for the one-machine total
weighted completion time problem with series-parallel precedence constraints. See [23]
for the details of this implementation.

5. Example problems. In this section we present several widely studied problems
which satisfy the ASI and SND properties.

(1) In the one-machine total weighted completion time problem n jobs are to be
sequenced on a single machine; each job j requires p; > 0 time units of processing. For
any sequence s let C =3, p; denote the completion time of the ith job in the
sequence s. Each job j also has a weighting factor w; and incurs a linear cost of w;
times its completion time, i.e., the cost of a sequence s of length k is 3%_, Wy Ci - The
problem, denoted by > w.C,, is to find a feasible permutation to minimize the total
weighted completion time, i.e.,

. . . : .H'
minimize i§] wn Ci
A recursive definition of the cost function f for X w;C; is defined on all sequences by
§(0)) =¥ for job j, and
f(s, 1) = f(s) + f(r) + p(s)w(¢) for sequences s and ¢, 3)

where p(s) =3%_, Py and w(t) =31_, w,, for sequences s and ¢ of lengths k and /,
respectively. Using (3) it is easy to verify the ASI and SND properties, where s < ¢ if
and only if w(s)/p(s) > w(8)/p(?).

(2) For the maximum cumulative excess cost problem consider a single item
inventory system. A set of n transactions are to be posted against the inventory. Each
transaction performs a fixed sequence of deposits and withdrawals. The relevant data
for transaction j is summarized in its net change in inventory level, ¢;, its maximum
net increase in inventory level, m;, and its “target” level, .. The processing of a typical
job j is illustrated in Figure 1. For any sequence s, define CC} = };} ¢y + My O
be the maximum level attained by the ith job in the sequence s (by convention
CC{ = myqy). The cost for a sequence s of length k is maximum, ;. {CC — e}
The problem, denoted by CE,,,,, is to find a feasible permutation to minimize the
maximum cumulative excess cost of a transaction above its target level, i.e.,

minimize maximum { CC" — ey }.
IeF I<i<n

Inventory
level

Maximum

Final

Initial

target

S _
processing of job j Time
FIGURE 1. Typical job for excess cost problem.

222 CLYDE L. MONMA AND JEFFREY B. SIDNEY

A recursive definition of the cost function f for CE_,, is defined on all sequences by
f(j)=m; — ¢ forjob; and
f(s,) = max(f(s), ¢(s) + f(z)) for sequences s and 7, 4)

where ¢(s) =34, ¢, for a sequence s of length k.

Using (4) it is easy to verify the ASI and SND properties, where s < ¢ if and only if

(@) c(s)<0andc(t)>0; or

(b) ¢(s5) <0, c(f) <0 and f(s) < f(2); or

(©) ¢(s) >0, c(r) >0 and c(s) — f(s) < (1) — f(0).

Johnson’s [10] two-machine maximum completion time flow-shop problem (C,,,)
and the maximum cumulative cost problem (CC,,,) [2], [3] are shown to be special
cases of CE_.- in [22].

(3) The maximum cost fault detection problem is similar to ¥ Q;c;: the sum cost
function is replaced by the maximum cost function. That is, the cost of a sequence s of
length & is maximum, ., {Q/c,,}- The problem, denoted by Q... is to find a
feasible permutation which minimizes the maximum expected component testing cost,
e,

. . . . r[
minimize melng?xm O: ey
A recursive definition of the cost function f for Q,,,, is defined on all sequences by
f(j)=¢ forjobj, and
f(s, t) = max(f(s), q(s)f(¢)) for sequences s and 1. (5)

Using (5) it is easy to verify the ASI and SND properties, where s < ¢ if and only if

(@) f(s)<Oandf(r) >0, or

(®) f(s) <0, f(r) <0 and f(s)/ q(s) > f(1)/q(?), or

(©) f()>0, /(1) >0 and f(s) < f(1).

(4) The total weighted exponential completion time problem is similar to >Sw,C;:
cost accumulates exponentially rather than linearly. The cost of a sequence s of length
e Wy€xp(—rC;’), where r>0 is a constant. The problem, denoted by
S'w,exp(— rC,), is to find a feasible permutation which minimizes the total weighted
exponential completion time, i.e.,

minimize Y waaerp(= rc”).

i=1

This problem is a special case of 3 Q;c;. To see this we note that given a job j for
Swiexp(—rC,), defined by p, > 0, w; and r > 0, we can construct a job j for 3 Q;c,
where ¢; = exp(—rp,) and ¢, = wexp(—1p), in such a way that the cost of any
sequence is the same for both problems. Job j is a valid job for 3 Q,c; since 0 < g; < 1.
A converse statement also holds: Given the data 0 < ¢; < 1 and ¢ for > Q;c; we may
construct a job j for ¥ w,exp(—rC), where p;= —log ¢; > 0, w; = ¢/qand r=1>0,
in such a way that the cost of any sequence is the same for both problems.

Table 1 summarizes the known results for the example problems defined in this
paper. The general precedence constrained 3 w;C, and CE,, problems are NP Hard,
in the sense of Cook [6] and Karp [11].

The reader may easily add new problems to this list by simply verifying the ASI
and SND properties. Given a sequencing function f which satisfies the ASI and SND
properties it is possible to construct a new sequencing function f* which also satisfies
these properties. One simple example of this is to take f'(s) = — f(s) for all sequences
s. Using the definition of the ASI property it is easy to show that f satisfies the ASI

SEQUENCING WITH SERIES-PARALLEL PRECEDENCE CONSTRAINTS 223

property using s < 't if and only if ¢ < s, where < is a binary preference relation for
/- This implies that the problem of finding a maximum cost permutation satisfies the
ASI property. Variations of the examples cited can also be easily shown to satisfy the
ASI and SND properties. Examples are the sequencing function for 3 w,C, given by
(3), where w; > 0 and 2; 1s unconstrained for all jobs J, rather than 720 and w,
unconstrained for all jobs j; and, the sequencing functions for ¥ Q.c; and O max given
by (1) and (5), where ¢ >0 and g; > 0 for all jobs j, rather than 0 < ¢, <1 and ¢
unconstrained.

TABLE 1
Summary of computational complexity

b Unconstrained | Chains/Tree Series-Parallel General Precedence
>0, [20] [7] Open Problem
> wiexp(— rC;) [26] — 17 Open Problem
Swc, [31] (4L 5L 191 [13][16] NP Hard [16] [19]

[27], [28]
CEL Conax [10] Coax (4] | CCoax [21B3] | CCpnax NP Hard [1]
Crax [21], [30] Cpax NP Hard [22]

5. Concluding remarks. We defined a class of problems based on easily verifiable
properties. These were solved with series-parallel precedence constraints by an
efficient general algorithm. This algorithm uses information about the cost function
only through the preference order defined on the elements to be sequenced. That is,
only ordinal data is necessary to solve these problems. Cardinal data values are
superfluous. This class of problems is studied with general precedence constraints in
[23] and [24].

The ASI property is one natural extension of the API property. Other extensions,
for example, considering pairwise (not necessarily adjacent) job interchanges and the
insertion of a job into another position in a sequence, are examined in [23]. These lead
to efficient algorithms for sequencing with general precedence constraints and se-
condary criteria problems.

The reader may easily verify that even though the Series-Parallel Algorithm
produces only optimal sequences, it can not produce a// optimal sequences in general.
In [23] stronger versions of the ASI and SND properties are defined which lead to a
version of the Series-Parallel Algorithm which can produce a sequence if and only if
the sequence is optimal. These stronger properties are satisfied by 3w, C, where 0,
and by ¥ Q,c, where 0 < ¢, < 1.

References

[1] Abdel-Wahab, H. M. (1976). Scheduling with Applications to Register Allocation and Deadlock
Problems. Ph.D. thesis, University of Waterloo, Waterloo, Canada.

[2] and Kameda, T. (1978). Scheduling to Minimize Maximum Cumulative Cost Subject to

Series-Parallel Precedence Constraints. Operations Res. 26 141-158.

[3] and - (1978). On the C-Optimal Scheduling Problem. Department of Electrical
Engineering, University of Waterloo, Waterloo, Canada.

[4] Adolphson, D. L. and Hu, T. C, (1973). Optimal Linear Ordering. SIAM J. Appl. Math. 25 403-423.

[51 Conway, R. W., Maxwell, W. L. and Miller, L. W. (1967). Theory of Scheduling. Addison-Wesley,
Reading, Massachusetts.

[6] Cook, S. A. (1971). The Complexity of Theorem-Proving Procedures. In Proc. Third Annual ACM
Symp. on the Theory of Computing, 151-158, Shaker Heights, Ohio.

[7] Garey, M. R. (1973). Optimal Task Sequencing with Precedence Constraints. Discrete Math. 4 37-56,

[8]1 Herriot, J. (1972). All Creatures Great and Small. Bantam Books, Inc., New York.

224 CLYDE L. MONMA AND JEFFREY B. SIDNEY

[9] Horn, W. A. (1972). Single-Machine Job Sequencing with Treelike Precedence Ordering and Linear
Delay Penalties. SIAM J. Appl. Math. 23 189-202.

[10] Johnson, S. M. (1954). Optimal Two- and Three-Stage Production Schedules with Setup Times
Included. Naval Res. Logist. Quart. 1 61-68.

[11] Karp, R. M. (1975). On the Computational Complexity of Combinatorial Problems. Networks. §
54-68.

{12] Knuth, D. E. (1973). The Art of Computer Programming, Vol. 3: Sorting and Searching. Addison-
Wesley, Reading, Massachusetts.

[13] . (1973). Private communication to T. C. Hu, July 23, 1973.

[14] Kurisu, T. (1976). Two-Machine Scheduling under Required Precedence among Jobs. J. Operations
Res. Soc. Japan. 19 1-13.

[15] Lawler, E. L. (1976). Graphical Algorithms and Their Complexity. Math. Centre Tracts 81. University
of California at Berkeley, 3-32.

. (1978). Sequencing Jobs to Minimize Total Weighted Completion Time Subject to Prece-

dence Constraints. Ann. Discrete Math. 11 75-90.

and Sivaslian, B. D. (1978). Minimization of Time Varying Costs in Single Machine
Sequencing. Operations Res. 26 563-569.

[18] — , Tarjan, R. E. and Valdez, J. (to appear). Analysis and Isomorphism of Series-Parallel
Diagraphs.

[19] Lenstra, J. K., Rinnooy Kan, A. H. G. and Brucker, P. (1977). Complexity of Machine Scheduling

: Problems. Ann Discrete Math. 1 343-362.

[20] Mitten, L. G. (1960). An Analytic Solution to the Least Cost Testing Sequence Problem. J. Industrial
Engineering. 11 17.

[21] Monma, C. L. (to appear). Two-Machine Flow-Shop Problem with Series-Parallel Precedence
Relations: An Algorithm and Extensions. Operations Res.

[16]

[17)

22} . (1978). Sequencing to Minimize the Maximum Job Cost. Submitted for publication.

[23] . (1978). Properties and Efficient Algorithms for Certain Classes of Sequencing Problems.
Ph.D. thesis, School of OR/IE, Cornell University, Ithaca, New York.

[24] . (1979). Sequencing with General Precedence Constraints. Submitted for publication.

[25] and Sidney, J. B. (1977). A General Algorithm for Optimal Job Sequencing with Series-
Parallel Precedence Constraints. Report 347. School of OR/IE, Cornell University, Ithaca, New
York.

[26] Rothkopf, M. E. (1966). Scheduling Independent Tasks on Parallel Processors. Management Sci. 12
437-447.

[27] Sidney, J. B. (1970). Single-Machine Deterministic Job-Shop Sequencing with Precedence Relations
and Deferral Costs. Ph.D. thesis, University of Michigan.

[28] . (1975). Decomposition Algorithms for Single Machine Sequencing with Precedence Relations
and Deferral Costs. Operations Res. 23 283-298.

[29] . (1976). A General Algorithm for Optimal Job Sequencing with Parallel-Chains Precedence
Constraints. University of Ottawa, Ottawa, Canada.

[30] . (1979). The Two-Machine Flow Time Problem with Series-Parallel Precedence Constraints.

Operations Res. 27.
[31] Smith, W. E. (1956). Various Optimizers for Single-Stage Production. Naval Res. Logist. Quart. 3
59-66.

MONMA: BELL LABORATORIES, HOLMDEL, NJ 07733
SIDNEY: FACULTY OF ADMINISTRATION, UNIVERSITY OF OTTAWA, OTTAWA, ONTAR-
10, CANADA KIN 6N5

Note added in proof. It has recently been pointed out to us by E. L. Lawler that the
Series-Parallel Algorithm using the Parallel-Chains Algorithm works when only the ASI
property holds. That is, the SND property is not needed.

