AN 4

ELSEVIER

Operations Research Letters 17 (1995) 89-101

NETPAD: An interactive graphics system for network modeling and
optimization
Nathaniel Dean, Monika Mevenkamp, Clyde L. Monma *

Bell Communications Research, 445 South Street, Morristown, NJ 07960-1910, USA

Received 1 February 1992; revised 1 December 1994

Abstract

The practical and theoretical importance of network models and algorithms is clearly documented in the literature. This
has resulted in several recent efforts to develop systems for network modeling, algorithms and/or visualization. The main
goal of this paper is to describe NETPAD, an interactive graphics system for network modeling and optimization. There were
several factors motivating us while developing this system. First, networks are inherently visual; so an interactive graphics
interface was considered to be a vital component of the overall design. Second, data form a very important part of network
modeling; therefore, we have integrated network attributes and tables into the system. Third, algorithmic needs change over
time to meet users’ needs for additional functionality or performance, and to meet the needs of specific applications; so we
have designed the system to be customizable and expandable. Fourth, widespread use of sophisticated methods requires ease-
of-use in addition to functionality; so the system includes a menu-driven user interface, standard file formats and algorithm
animation. NETPAD is a portable system written in the C programming language for workstations with the UNIX operating
system and the X Window System.

Keywords: Network optimization; Graphical user interface (GUI); Software; Algorithms

1. Overview The practical and theoretical importance of network

models and algorithms is clearly documented in the

Networks are useful for modeling many practical
situations, including physical networks such as the
ones representing communications or transportation
networks, as well as abstract networks such as those
representing the scheduling of events or the allo-
cation of resources. At.the same time, research in
graph theory and network algorithms have provided a
wealth of tools for network analysis and optimization.

* Corresponding author.

0167-6377/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved

SSDI 0167-6377(95)00010-0

literature.

There have been several recent efforts to develop
systems for network modeling, algorithms and/or
visualization. These efforts represent attempts to har-
ness the considerable power of the available network
technology into a system which is easy-to-use and
meets the needs of certain communities of users.
This has resulted in a proliferation of special-purpose
systems and individual libraries of network
algorithms.

The main goal of this paper is to describe NETPAD,
an interactive graphics system for network modeling

90 N. Dean et al. | Operations Research Letters 17 (1995) 89-101

and optimization. There were several factors motivat-
ing us while developing this system. First, networks
are inherently visual; so an interactive graphics inter-
face was considered to be a vital component of the
overall design. Second, data form a very important part
of network modeling; therefore, we have integrated
network attributes and tables into the system. Third,
algorithmic needs change over time to meet users’
needs for additional functionality or performance,
and to meet the needs of specific applications; so
we have designed the system to be customizable and
expandable. Fourth, widespread use of sophisticated
methods requires ease-of-use in addition to func-
tionality; so the system includes a menu-driven user
interface, standard file formats and algorithm anima-
tion.

NETPAD is an interactive graphics software
system which provides an integrated environment
for network modeling and optimization with features
including:

e graphics for creating, displaying and manipulating
networks,

e tables for entering, displaying and manipulating
data,

e standard formats for network files,

e expandable library of network algorithms,

e facilities for algorithm animation,

At one level, NETPAD functions like an “electronic
pencil and notepad” using a mouse, menus and multi-
ple windows to create, manipulate and save networks;
it can also be used to obtain Postscript printer output.
On another level, it functions like an elaborate “net-
work calculator” for applying available functions and
algorithms to process networks. It also functions like
a “network workbench and toolkit” using a library of
network algorithms which can be customized and ex-
panded to provide for rapid prototyping for specific
applications. This functionality results in an easy-to-
use vehicle for harnessing the power of available net-
work modeling and algorithmic tools.

We use the term “graph” to represent a set of
nodes together with a set of links, where each link
consists of a pair of nodes. We use the term “at-
tribute” to represent data values associated with
the graph itself, its nodes or its links. Each (graph,
node or link) attribute has a name, a data type (e.g.,
character, integer, float) associated with it, and data
values (for each graph, node or link, respectively).

We use the term “network” to represent a graph to-
gether with any number (possibly none) of types of
attributes.

2. NETPAD environment

NETPAD is an interactive graphics software
system which provides an integrated environment
for network modeling and optimization. It is a
portable system written in the C programming lan-
guage for workstations with the UNIX operating
system and the X window system; it is currently
being used at Bellcore on SUN and DEC work-
stations and on 486-based IBM-compatible personal
computers. It consists of an interactive graphics,
menu-driven user interface which can be easily
customized to fit specific users or applications. It also
consists of library of network algorithms which can
be easily expanded to include new or existing algo-
rithms.

NETPAD utilizes a mouse-oriented, menu-driven
user interface to provide for maximum ease-of-use
for most users. Experienced users can also make use
of keyboard equivalents for all menu items in or-
der to operate more quickly once familiarity with the
system is gained. The interface is further enhanced
by allowing the user to easily customize most aspects
of the system, including the menus themselves, items
within a menu, and keyboard equivalents, to provide
a “look-and-feel” to fit a particular user or applica-
tion.

NETPAD allows multiple windows to be present at
any time. Operations selected from a given window
are applied to the network currently associated with
that window. A window consists of the four main com-
ponents, the status area, menu area, button area and
display area. Examples of typical windows are shown
in Fig. 1.

The status area is for displaying text information
about current algorithm including the name of the
algorithm being executed, its type (e.g., internal or ex-
ternal) and its status (e.g., done). The menu area dis-
plays the heading titles for the menus. The user uses
the mouse to pop-up a menu in order to select an item
to execute next. The button area is used to execute
or kill a selected menu item, and to decide whether

N. Dean et al. | Operations Research Letters 17 (1995) 89-101

win.refresh
internal
done

Fig. 1. Examples of typical windows.

91

-

92

algo
tupe
status

N. Dean et al. | Operations Research Letters 17 (1995) 89-101

win.refresh
internal
done

parans

show hi

BUrgS

whitrey

Pt e bn

T

Filehy

bidor 1

wislmsday

s ¥

vy

satardy

(]
payday

e

swordd
R
S a—

krife

‘en

A

Fig. 1. (Continued.)

N. Dean et al. | Operations Research Letters 17 (1995) 89-101 93

to show or hide parameters associated with an algo-
rithm. The display area is for graphically displaying
the network.

The number and names of the menu headings and
the particular items within a menu are governed by
a configuration file. NETPAD reads this file initially
to set up the user’s environment. The format of the
configuration file consists of an entry for each menu
starting with the keyword “MENU:” followed by
the name of the menu (in quotes), and a list of
menu items in brackets. Each menu item includes the
name (in quotes), the associated executable file in
the NETPAD library, and the keyboard equivalent
(in quotes). A sample configuration file is shown in
Table 1.

This particular configuration file would generate
the menu areas for the windows shown in Fig. 1.
Several of the menus are for functions normally asso-
ciated with the NETPAD interface. For example, the
Win menu entries are for window management, like
opening a new window or quitting the current win-
dow; and the I/0 window is for input/output functions
like loading a network from a file, saving the cur-
rent network to a file or printing the current network.
The Graf, Node and Link menus are for perform-
ing operations on the entire graph, on its nodes or
on its links, respectively. Typical operations include
cut-and-paste; selection of nodes and/or links; oper-
ations on selected elements (e.g., deletion, change
color/shape/style); changing defaults for node/link
colors, node shapes (e.g., point, box, etc), and link
styles (solid, dashed, directed). The Attr menu is used
for handling attributes, including defining new at-
tributes and setting attribute values. The Anim menu
contains animation functions which are part for ini-
tializing and playing back an animation file in several
modes (e.g., run, step, next).

- The other menu items (we show here the Make,
Algo, Geom and Nets menus) would normally be
customized menus which could contain functions
from the NETPAD library (called internal algorithms)
or from a separate user program library (called
external algorithms); these would be grouped into
categories according to the user’s preference as spec-
ified in the configuration file definition. There are
many more internal and external algorithms which
are omitted from discussion here for the sake of
clarity.

Table 1
Example configuration file

MENU: “Win” {

“Open” win.open “wo”
“Quit” win.quit “wk”
}

MENU: “I/O” {

“Load” graf.load “GL”
“Save” graf.save “GS”
“Print” graf.print “GP”
MENU: “Make” {

}

MENU: “Graf” {

“Select” graf.select “Gs”
“Cut” graf.cut “Gy”
“Paste” graf.paste “Gp”
}

MENU: “Node” {

“Select” nodes.select “Ns”
“Delete Sel” sel.node.delete “nd”
“Color ” nodes.color “N¢”
“Shape ” nodes.shape “Nt”
MENU: “Link” {

“Select” links.select “Ls”
“Delete Sel” sel.link.delete “I1d”

“Color ” links.color “L¢”
“Style ” links.style “Lt”

MENU: “Attr” {

“Define Attr” attr.define “Ad”
“Set Attr Val” attr.set “As”
}

MENU: “Algo” {

“Planar draw” planar.alg “PI”

“Path Finder” path.alg “Pf”

}
MENU: “Geom” {

MENU: “Nets” {

}

MENU: “Anim” {

}

3. Using NETPAD

To further clarify how the interface is used, we con-
sider some specific examples. Selecting “Load” item
in the “I/O” menu has the effect shown in the first entry
in Fig. 2; note that a parameter box appears to request
the name of the file to load (in this case, planar.grf)
and the network is now drawn in the display area with

94

alga
type
status

N. Dean et al. | Operations Research Letters 17 (1995) 89-101

graf . inac
internal
done

["Win 10100 Hake |{Grapn 1| boge |} Lark 1] Brer [#ign 1] Geom || Hets §§'m-xm_i

parans

shou

Jhide

3

Fig. 2. Examples of menu interactions.

N. Dean et al. | Operations Research Letters 17 (1995) 89-101

algo Yutte enbedding {(matrix)
tupe external
status Tutte embedding completed

Fig. 2. (Continued.)

95

96 N. Dean et al. |/ Operations Research Letters 17 (1995) 89-101

the information updated in the status area (namely,
that the internal algorithm graf.load was completed).
We could now select the “planar draw” item from the
Algo menu to obtain a planar layout of the graph as
shown in the second entry of Fig. 2.

To further illustrate the notion of attributes, con-
sider Fig. 3 which shows a network with nodes
labeled by city names and links labeled by distances.
A network can have any number of attributes associ-
ated with the graph, nodes or links. Any one of these
attributes can be chosen to be displayed as a node
or link label. The position of a label can be chosen
by selecting a clock position around a node and by
selecting the percentage distance along a link. Fig. 3
shows the result of executing the “Path Finder” al-
gorithm from the Algo menu on this network: note
that the shortest path between the selected cities of
Phoenix and St. Paul is highlighted and the status
area shows the path length. We note that algorithms
which provide more detailed outputs can make use
of an output box similar to the parameter box used
for inputs to algorithms which we described previ-
ously. Attribute values can be modified for individual
nodes or links by using the Node or Link menus,
respectively, or for all nodes or links by using the
Attr menu to obtain an attribute table as shown in
Fig. 4; an attribute table displays all node or link
attributes and their values in a tabular format and al-
lows for quickly loading, modifying and saving their
values.

4. Customizing NETPAD

We have already explained how to customize the
user interface using the configuration file. We now de-
scribe how to further customize the system by adding
user-defined programs, called external algorithms. Ex-
ternal algorithms are written as main programs which
are linked to the NETPAD library and are separate
programs residing in their own executable files. These
algorithms access and manipulate networks by using
functions provided by the NETPAD library. Each ex-
ternal algorithm has an algorithm specification file to
identify its input requirements, or parameters, includ-
ing their names, types and default values. This file is
used by the NETPAD kermnel so that the interface can

automatically execute the algorithm and provide the
required parameter boxes.

Each source code file for an external algorithm must
begin by including the NETPAD file containing all
definitions of the NETPAD data types, constants and
subroutines. The internal structure of the NETPAD
data objects is hidden from the user for several rea-
sons: (1) the user is not burdened with mastering them,
(2) the user is protected from accidental modification,
and (3) the system is protected from malicious modi-
fication. Pointers to these objects are used to commu-
nicate between programs and the system.

There are three basic data types: networks, nodes
and edges. An external algorithm accesses the data
via function calls. These functions comprise the pro-
grammer interface and are the only means by which
an external algorithm may interact with the system. To
execute a function, the programmer generally passes
a pointer to one of the three basic NETPAD data ob-
jects as input. The following paradigm is typical for
external algorithms.

1. Accept the current network and parameters as

input.

2. Use function calls to obtain the attribute values.

3. Place the data into private data structures.

4. Compute results using these private data struc-

tures.

5. Prepare the output network, attributes and re-

sults.

6. Return the outputs to the system.

7. Exit.

Of course, it is not essential that the algorithm per-
form all of these steps.

A programmer need not write, modify or re-compile
any existing files in order to add a new program to the
system. The user simply compiles the new program
and links it with the system. Assuming that the user
has a C program called pgm.c, for example, one simply
needs to create a file called pgm.alg describing the
parameters used as input to the program and add a
line to the customization file so that the program will
appear as a selection on the desired menu.

NETPAD automatically passes the current network
and (if necessary) further parameters to algorithms. It
allows the algorithms to return a modified network or
to create and return a completely new network. An-
imation facilities are provided for user-defined pro-
grams, thus supporting the visualization and analysis

N. Dean et al. | Operations Research Letters 17 (1995) 89-101

algo win.refresh
tupa internal
status done

[din 176 |[Hake |[Grapn | [Boge |[Lieb J[Aete || Rige || Geom || Hets W o 1

parans

Bismarsk

Phisgrlx

Austin Baton Rouge §

Fig. 3. Example of algorithm with attributes.

97

98 N. Dean et al. | Operations Research Letters 17 (1995) 89-101

attr_table

Fig. 4. Example of an attribute table.

of network algorithms. These animations are possi-
ble by either creating a text file of special commands
which can be played back later like a movie or by ac-
cessing an available graphics library directly from the
program.

These feature combine to make it easy for users
to generate and study networks with specified prop-
erties, visualize relationships among networks and
algorithms, and perform analysis and optimization
for network-based problems. NETPAD can also be
used to teach students about network properties and
network algorithms and the user interface is flexible
enough to allow a user to customize NETPAD for
specific applications.

5. NETPAD architecture

The basic components of NETPAD are the kernel,
the internal and external algorithms, the animation and
graphics functions and the customization file. The ker-
nel is the only component that we have not yet dis-
cussed in detail, and so we describe it now together
with a brief look at the overall structure of NETPAD.

The NETPAD kernel unites the other components
together into one coherent system by providing an in-
teractive environment for executing internal and ex-
ternal algorithms, animating algorithms and editing
networks. In order to provide display and interactive
editing capabilities, the kernel uses the X library, X
toolkit intrinsics and the Athena Widget set, and it is
linked with the Xaw, Xtk and X libraries. Using X, the
kernel manages the screen in order to visually repre-
sent the user’s current networks and to update this rep-
resentation in order to show network changes which
result directly from user actions and from algorithm
executions initiated by the user.

Following the design philosophy of the X Window
System, the kernel uses the event model for handling
user-computer interactions. (Other approaches involve
the use of transition networks or context-free gram-
mars and are inferior, see [9]). In order to manage the
display, the kernel must maintain its own data struc-
tures which must agree with the network and any other
information being displayed. The primary data struc-
ture type of the kernel is called grafdsp, which stands
for network display. There is one grafdsp structure
per network, and that structure contains pointers to

N. Dean et al. | Operations Research Letters 17 (1995) 89-101 99

the various display objects associated with that net-
work, including to its window and menus, as well as to
the network itself and to the algorithms which are ac-
cessible via the window’s menus. For example, when
a node is created, the node is added to grafdsp, and
when a node is moved by the user, the new position
is recorded in grafdsp.

To execute an external algorithm, the kernel tem-
porarily blocks the user’s access to the network win-
dow, puts it into reverse video and forks a process for
the algorithm. After the process is complete and ex-
its, this is detected by a signal handler installed by the
kernel which generates an event which contains infor-
mation regarding the exit status of the algorithm and
which network is associated with the algorithm. This
then triggers another event to process the algorithm’s
results. More specifically, this last event will unblock
the associated network window, put it back in normal
video, display the result network in the same window,
and (if appropriate) display an error message or any
text or numerical information returned by the algo-
rithm.

6. Potential uses of NETPAD

The potential uses of NETPAD fall roughly into

three categories:

e research in network modeling and algorithms;

e rapid custom prototyping for specific applications;

e educational aspects of network modeling.
We have used NETPAD ourselves in a number of re-
search areas including graph theory, combinatorial op-
timization and network design, and have used the an-
imation feature for studying network algorithms. For
example, we were able to use NETPAD to develop an
algorithm for embedding a graph in the plane to ap-
proximately minimize the number of crossing when
edges are drawn as straight lines. This is known as
the rectilinear crossing number problem which is NP-
hard (see [7]). For complete graphs, the exact crossing
number is known for n<9 (see [10]), but for n>10
the classical construction of Jensen [13] produces a
layout which, in several cases, is not as good as the
layouts generated by NETPAD (see Table 2). We are
hopeful that by observing enough instances we will be
able to derive a better general construction procedure.

Table 2
Upper bounds for crossing number of complete graph on n
nodes

n Previous best NETPAD
4 0 0
5 1 1
6 3 3
7 9 9
8 19 19
9 36 36
10 62 62
11 102 102
12 156 154
13 231 229
14 328 327
15 453 449
16 612 609
17 808 806
18 1047 1019
19 1338 1322

NETPAD provides a great deal of functionality
which makes it possible to rapidly build a working
prototype for specific applications. This has been
done in several Bellcore projects ranging from obtain-
ing automatic “nice” drawings of wiring diagrams, to
developing tool for managing computer networks, as
well as work for a network design and analysis tool
for packet networks.

NETPAD is also a useful educational tool for study-
ing network modeling algorithms and applications.
For professors teaching courses on algorithms, NET-
PAD could be used to explain concepts which might
otherwise be difficult to comprehend. It could be used
as part of a lab for expeérimentation or in conjunction
with projects for students to gain hands-on experience
with algorithms. The visual and interactive nature of
NETPAD might also stir some enthusiasm in students
who would otherwise have little or no interest in the
course. NETPAD is being used as part of the educa-
tional program at Rutgers University in conjunction
with the DIMACS NSF Center for Discrete Mathe-
matics and Theoretical Computer Science. This effort
is aimed at high school level students and teachers
to motivate students to pursue careers in mathematics
and computer science.

100 N. Dean et al. | Operations Research Letters 17 (1995) 89-101

7. Some existing systems

This section contains a sample of existing network
modeling and analysis systems to illustrate a range
of considerations that may be of interest to potential
users of such systems. None of these systems contain
the full range of features available in NETPAD. The
systems for the Macintosh and the IBM PC have an
obvious computational disadvantage imposed by the
hardware, and the necessary hardware for the UNIX-
based systems is more expensive and, therefore, not
as readily available.

7.1. IBM PC-based programs

TRAVEL is a software package developed by Boyd,
Pulleyblank and Cornuejols [2] for the traveling sales-
man problem. It is an interactive, menu-driven sys-
tem which runs on an IBM PC. The system allows the
user to choose among various heuristic algorithms and
lower-bounding procedures to obtain solutions with
provably near-optimal performance. Color graphics is
used to display an animation of the algorithms as they
are running.

INDS (Interactive Network Design System) is a
software package developed by Monma and Shall-
cross [17] for the 2-connected network design prob-
lem, which arises in the design of survivable networks.
It runs on an IBM PC, incorporates the TRAVEL user
interface, and incorporates several heuristic algorithms
[18].

FIBER OPTIONS is a software package developed
by Cardwell et al. [3] specifically for designing sur-
vivable fiber optic networks. It uses the methods of
INDS to design the network topology and uses other
methods for handling aspects of the problems, like
placing equipment, bundling demands and multiplex-
ing traffic. These algorithms have been shown to pro-
duce optimal or near-optimal solutions to real-world
problems. The user interface was written and designed
so that it could run on several computing and graphics
platforms. FIBER OPTIONS is used within Bellcore
and the Bell Client Companies to plan cost-effective,
survivable interoffice fiber optic communication net-
works. It is available to other organizations for outside
licensing [1].

CARDD (Computer-Aided Representative graph
Determiner and Drawer) is an expert system that

constructs a graph with properties defined by the user.
It was developed by T. Haynes, L. M. Lawson and
M. W. Powell (personal communication) and uses a
forward chaining inference algorithm; i.e., once an
invariant is resolved, it is never eliminated. The prop-
erties are specified by setting values for any subset
of the available set of eight invariants: number of
nodes, number of edges, maximum degree, minimum
degree, independence number, maximum clique size,
chromatic number and domination number.

NETSOLVE is an interactive software package de-
veloped by Jarvis and Shier [12] for network manip-
ulation and optimization. It utilizes a command lan-
guage rather than a menu-driven interface and has a
library of optimization algorithms. It runs on an IBM
PC and does not use graphics.

7.2. UNIX-based programs

The GMP software system was developed by Es-
fahanian (personal communication with some of its
users). It uses SUN’s Sunwindows window system
which is inherently less portable than systems using
X Windows.

The GraphPack software system was developed by
Goldberg et al. [8]. It runs under X Windows and
includes a language called LiLa (which is based on the
C programming language with additional primitives
like sets, graphs, trees, etc.) to simplify the coding of
new algorithms. It does not have a graphics interface.

The Combinatorica software system was developed
by Skiena [19] and it is actually a collection of pro-
grams written in Mathematica (which must be pur-
chased separately) and runs on a variety of UNIX-
based computers. It does not have a graphics interface.

Devitt and Colbourn [6] have developed a system
for investigating network reliability problems. It is an
interactive, algebraic environment which provides a
package of routines coded in the MAPLE language. It
does not have a graphics interface.

7.3. Macintosh-based programs

Three versions of a program called CABRI are men-
tioned in [4], one running on a Macintosh, another on
a PC-compatible, and a third version for workstations
that uses the BWE window management toolset from
Brown University. (Only the Macintosh version was

N. Dean et al. | Operations Research Letters 17 (1995) 89-101 101

available to us.) It contains several network editing
and analysis functions similar to NETPAD.

Groups & Graphs [14] is a program for manipulat-
ing graphs and groups. It contains various group theo-
retic algorithms, such as computing the automorphism
group of a graph and determining whether two graphs
are isomorphic. It does not have a graphics interface.

8. NETPAD availability

A version of the NETPAD software is currently be-
ing used within Bellcore. This software is a research
prototype system. In addition, several documents are
available which provide much more detailed informa-
tion about the NETPAD system, including a User’s
Guide [5], a Programmer’s Guide [15] and a Refer-
ence Guide [16].

NETPAD was designed to run in a workstation en-
vironment with the Unix operating system and un-
der the X Window System. It is currently running
on a SUN and DEC workstations as well as a 486-
based IBM-compatible PC. To take full advantage of
NETPAD, it is necessary to have adequate processing
power (e.g., comparable to the machines cited above),
memory (e.g., 16 MB RAM), disk space (e.g., 100
MB hard disk) and display technology (e.g., a large
screen and color are useful).

The NETPAD source code and documentation are
available on a royalty-free basis to universities for
research, educational or academic purposes under
a Software License Agreement these can be ob-
tained by “ftp” from flash@bellcore.com in directory
/usr/spool/ftp/pub/nate.

References

[1] Bellcore, FIBER OPTIONS: Software for designing
survivable optical fiber networks, Bellcore, 1989.

[2] S.C. Boyd, W.R. Pulleyblank and G. Cornuejols, “TRAVEL-
An interactive traveling salesman package for the IBM
personal computer”, Oper. Res. Lett. 6, 141-143 (1987).

[3] R.H. Cardwell, C.L.. Monma and T.H Wu, “Computer-
aided design procedures for survivable fiber optic networks”,
IEEE J. Selected Areas of Communications 7, 1188-1197
(1989).

[4] M. Dao, M. Habib, J.P. Richard and D. Tallot, “CABRI, an
interactive system for graph manipulation”, manuscript.

[5] N. Dean, C.L. Monma and M. Mevenkamp, NETPAD User’s
Guide, Bellcore, document, 1991.

[6] J.S. Devitt and C.J. Colbourn, “On implementing an
environment for investigating network reliability”, Technical
report, University of Waterloo, 1991.

[7] M.R. Garey and D.S. Johnson, “Crossing number is NP-
complete”, SIAM J. on Algorithms and Discrete Methods
4, 312-316 (1983).

[8] M. Goldberg, E. Kaltofen, S. Kim, M. Krishnamoorthy and
T. Spencer, “GraphPack: A software system for computations
on graphs and sets”, manuscript.

[9] M. Green, “A survey of three dialog models”, ACM Trans.
on Graphics 5, 244-275 (1986) .

[10] R.K. Guy, “Latest results on crossing numbers”, Recent
Trends in Graph Theory, Springer, New York, 1971, pp.
143-156.

[11] F. Harary and A. Hill, “On the number of crossings in a
complete graph”, Proc. Edinburgh Math. Soc. 13, 333-338
(1962).

[12] J.P. Jarvis and D.R. Shier, “NETSOLVE: Interactive software
for network optimization”, Oper. Res. Lett. 9, 275-282
(1990).

[13] H.F. Jensen, “An upper bound for the rectilinear crossing
number of the complete graph”, J. Combin. Theory 11, 212—
216 (1971).

[14] W. Kocay, “Groups and graphs, a Macintosh application for
Graph Theory”, J. Combin. Math. Combin. Comput. 3, 195~
206 (1988).

[15] M. Mevenkamp, NETPAD Programmer’s Guide, Bellcore,
document, 1991.

[16] M. Mevenkamp, NETPAD Reference Guide, Bellcore,
document, 1991.

[17] CL. Monma and D.F. Shallcross, “A PC-based inter-
active network design system for fiber optic communi-
cation networks”, in: Sharda, Golden, Wasil, Balci and
Stewart (eds.), Impacts of Recent Computer Advances on
Operations Research, Elsevier, New York, 1989.

[18] C.L. Monma and D.F. Shallcross, “Methods for design-
ing communications networks with certain two-connected
survivability —constraints”, Oper. Res. 37, 531-541
(1989).

[19] S.S. Skiena, Implementing Discrete Mathematics: Combi-
natorics and Graph Theory with Mathematica, Addison-
Wesley, Reading, MA, 1990.

