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INTEGER POLYHEDRA ARISING FROM CERTAIN NETWORK DESIGN
PROBLEMS WITH CONNECTIVITY CONSTRAINTS*

MARTIN GROTSCHEL AND CLYDE L. MONMA:I:

Abstract. In this paper a general integer linear programming model is presented for the important practical
problem of designing minimum-cost survivable networks, and this model is related to concepts in graph theory
and polyhedral combinatorics. In particular, several interesting special cases of this general model are considered,
including the minimum spanning tree problem, the Steiner tree problem, and the minimum cost k-edge connected
and k-node connected network design problems. The integer polyhedra associated with these problems are
studied, those inequalities from natural ILP-formulations that define facets are identified, the separation problem
for these facets is addressed, and how good lower bounds can be obtained from the models studied here is
indicated.
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1. Introduction. For over thirty years, mathematical models arising from the design
and analysis of communication networks have been a major focal point for research
efforts in the fields of operations research, graph theory, and discrete mathematics. This
fertile area has been stimulated by the great practical importance of the associated real-
world problems and the wide range applicability of these models on the one hand, and
the interesting structural and algorithmic questions and the elegant theoretical results on
the other hand. The introduction of new types of networks and new technologies has
resulted in a rich variety of models which have been studied over the years.

A recent trend in communication networks is the emergence offiber optic technology
as one ofthe major components in the "network ofthe future." This transmission medium
is cost effective, reliable, and provides very high transmission capacity. This combination
promises to usher in new telecommunication services requiting large amounts of band-
width. At the same time, the unique characteristics of this technology imply the need for
new network design approaches.

Survivability is an important factor in the design of communication networks. Net-
work survivability is used here to mean the ability to restore service in the event of a
catastrophic failure of a network component, such as the complete loss of a transmission
link or the failure ofa switching node. Service could be restored by routing traffic through
other existing network links and nodes, assuming that the design of the network has
provided for this additional connectivity. Clearly, a higher level of redundant connectivity
results in a greater network survivability and a greater overall network cost. This leads
to the problem of designing a minimum-cost network which meets certain required
connectivity constraints.

Survivability is a particularly important issue for fiber networks. The high capacity
of fiber facilities results in much more sparse network designs with larger amounts of
traffic carried by each link than is the case with traditional bandwidth-limited technologies.
This increases the potential damage to network services due to link or node failures. It
is necessary to trade off the potential for lost revenues and customer goodwill against the
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extra costs required to increase the network survivability. Recent work on methods for
designing survivable fiber communication networks by Monma and Shallcross (1989)
concludes that survivability is an important issue for fiber networks, (2) "two-con-
nected" topologies provide a high level of survivability in a cost effective manner, and
(3) good heuristic methods exist for quickly generating "near-optimal" networks.

In 2 and 3 of this paper, we present a general integer linear programming model
for the network design problem with connectivity constraints and relate this model to
concepts in graph theory and polyhedral combinatorics. In the remaining sections we
consider important special cases of this general model and study the associated integer
polyhedra, identify which natural inequalities define facets, address the separation problem
for these facets, and indicate how good lower bounds can be obtained from these models.
Section 4 is concerned with the minimum spanning tree problem where a complete linear
description of the associated integer polyhedron is given. This result follows easily from
matroid theory (see Edmonds 1971 )) and is used in later sections. Related work for the
Steiner tree problem is described in 5. Sections 6 and 7 examine the minimum-cost
network design problems with edge connectivity constraints and node connectivity con-
straints, respectively, from a polyhedral point of view. A model which combines both
edge and node connectivity constraints is considered in 8.

2. A general model. In this section, we formalize the network design problems
which are being considered in this paper. A set V of nodes is given which represents the
locations of the switches (offices) which must be interconnected into a network in order
to provide the desired services. A collection E of edges is also specified which represents
the possible pairs of nodes between which a direct transmission link can be placed. We
let G (V, E) be the (undirected) graph of possible direct link connections. Each edge
e E has a nonnegativefixed cost ce of establishing the direct link connection. The graph
G may have parallel edges but contains no loops. (Thus we assume throughout this paper
that all graphs considered are loopless but may have parallel edges. Graphs without
parallel edges are called simple.) The cost of establishing a network consisting of a subset
F c__ E of edges is the sum of the costs of the individual links contained in F. The goal
is to build a minimum-cost network so that the required survivability conditions, which
we describe below, are satisfied. We note that the cost here represents setting up the
topology for the communication network and includes placing conduits in which to lay
the fiber cables, placing the cables into service, and other related costs. We do not consider
costs which depend on how the network is implemented such as routing or multiplexing,
nor do we consider repeater costs. Although these costs are also important, it is usually
the case that a topology is first designed and then these other costs are considered in a
second stage of optimization.

For any pair of distinct nodes s, V, an [s, l-path P is a sequence of nodes and
edges (v0, el, Vl, e2, "", v_ l, e, v), where each edge ei is incident with the nodes
vi- and vi (i 1, l), where Vo s and v t, and where no node or edge appears
more than once in P. A collection P1, P2, Pk of[s, t]-paths is called edge-disjoint
if no edge appears in more than one path, and is called node-disjoint if no node (except
for s and t) appears in more than one path. (Remark: In order to be consistent with
standard graph theory we do not consider two parallel edges as two node disjoint paths.)

The survivability conditions require that the network satisfy certain edge and node
connectivity requirements. In particular, for each pair of distinct nodes s, V, three
nonnegative integers rst, kst, and ds are given. The numbers rt represent the edge sur-
vivability requirements and the numbers kt and dt the node survivability requirements,
meaning that the network N (V, F) to be designed has to have the property that, for
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each pair s, 6 V of distinct nodes, N must contain at least rst edge disjoint s, ]-paths
and the removal of at most kst nodes (different from s and t) from N must leave at least
dst edge disjoint [s, t]-paths. (Clearly, we may assume that kst <= IV[ 2 for all s,
V, and we will do this throughout this paper.) These conditions ensure that some com-
munication path between s and will survive a prespecified level of combined failures
of both nodes and links. The levels of survivability specified depend on the relative
importance placed on maintaining connectivity between different pairs of offices.

Let us now introduce, for each edge e E, a variable Xe and consider the vector
space Re. Every subset F _c E induces an incidence vector F (X.Fe)eeE ( RE by setting
F if e e F, Fe -= 0 otherwise, and vice versa, each 0/1-vector x e RE induces a

subset Fx e EI Xe } of the edge set E of G. If we speak of the incidence vector
of a path in the sequel we mean the incidence vector of the edges of the path. We can
now formulate the network design problem introduced above as the following integer
linear program.

(2.1) min cijxij
OeE

subject to

(i) xij>=rst
ie Wje V\ W

(ii) E E xo >=
ie Wje VX(ZtO W)

for all pairs s, V, s 4 and
for all W c_ V with s e W, W;

for all pairs s, e V, s 4 and
for all Z c_ V\ { s, } with [Z[ ks, and
for all W c_ V\Z with s e W, <t W;

(iii) O_-<xo_-<
(iv) xo integral

for all ij E;

for all ij E.

Note that if, for each pair s, of distinct nodes in V and for each set Z
_
V\ { s, with

Z] kst, N- Z contains at least dst edge disjoint s, l-paths, then all node survivability
requirements are satisfied, i.e., inequalities of type (ii) need not be considered for node
sets Z c__ V\ { s, } with ]Z] < kst. It follows from Menger’s theorem that, for every
feasible solution x of (2.1), the subgraph N V, Fx) ofG defines a network that satisfies
the given edge and node survivability requirements.

This formulation is quite general and, as far as we know, this mixture of node and
edge survivability requirements has not been considered in the published literature. (The
survey paper by Christofides and Whitlock 1981 discusses some related models.) Problem
(2.1) is NP-hard as it contains various NP-hard special cases. Some of them will be
mentioned in the sequel.

The classical network synthesis problem for multiterminal flows is obtained from
(2.1) by dropping constraints (ii) and (iv). In the standard formulation of the network
synthesis problem the upper bounds Xe --< are not present. But our model allows parallel
edges in the underlying direct-link graph, or equivalently, allows the upper bound in
constraints (iii) to take on any nonnegative integer values for each edge. This linear
programming problem has a number of constraints that is exponential in the number of
nodes of G. For the case co c for all ij E, where c is a constant, Gomory and Hu
(1961 found a simple algorithm for its solution. Bland, Goldfarb, and Todd (1981
pointed out that the separation problem for the class of inequalities (i) can be solved in
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polynomial time by computing a minimum capacity cut; it thus follows by the ellipsoid
method that the classical network synthesis problem can be solved in polynomial time.

The minimum spanning tree problem can be phrased as the task to find a minimum
cost connected subset F

_
E of edges that span V. (See Graham and Hell (1985) for a

survey of work on this problem.) This problem can be viewed as a special case of (2.1)
as follows. We drop constraints (ii) and set, for all distinct s, 6 V, rt in constraints
(i). In 4 we present a complete linear description ofthe integer polytope for the minimum
spanning tree problem which follows easily from matroid theory (see Edmonds 1971 )).

Similarly, the closely-related Steiner tree problem is to find a minimum cost con-
nected subset F E of edges which span a specified subset S

_
V of nodes. This prob-

lem is a special case of (2.1) where we drop constraints (ii) and set in constraints (i),
rt for all s, 6 S, and rt 0 otherwise. This problem is NP-hard and will be dis-
cussed in 5.

A graph with at least two nodes is k-edge (respectively, k-node) connected if there
are k edge-disjoint (respectively, node-disjoint) paths between every pair of distinct nodes.
For our purposes, the graph K consisting ofjust one node is k-edge and k-node connected
for every natural number k. For a graph G 4: K1, the largest integer k such that G is k-
edge connected (respectively, k-node connected) is denoted by (G) (respectively, K(G))
and is called the edge connectivity (respectively, node connectivity) of G. Our definition,
for instance, implies that, for a graph G with n >= 2 nodes such that every two nodes are
linked by p edges, K(G) n and (G) p(n holds.

There have been many papers in the graph theory literature that study properties
ofk-edge or k-node connected graphs. The problem offinding an optimal k-edge connected
network is a special case of (2.1) where all inequalities (ii) are dropped and where, for
all distinct s, V, rt k. The problem offinding an optimal k-node connected network,
k _-< VI 1, is a special case of (2.1) as follows. We drop the constraints (i) and set,
for all distinct s, V, kst k and dst 1.

Monma, Munson, and Pulleyblank 1985 consider the minimum cost 2-connected
network design problem where the underlying graph G (V, E) is a complete graph and
the costs satisfy the triangle inequality, i.e., cg < ci + cg for all i, j, k e V. They show
that, for k 2, there exists an optimal k-edge (respectively, k-node) connected solution
whose nodes all have degrees k or k + 1, and such that the removal of any 1, 2, or
k edges does not result in all connected components still being k-edge (respectively, k-
node) connected. (This is extended to arbitrary k >= 2 by Bienstock, Brickell, and Monma
(1987).) They also show that these conditions "characterize" the optimal 2-connected
networks in an appropriate sense, but that this is not the case for k >= 3. We return to
the k-connected network design problems in 6 and 7.

3. The polyhedral approach. The main objective ofthis paper is to study the network
design problem from a polyhedral point of view to see which of the inequalities (i), (ii),
(iii) of(2.1) (and which offurther classes ofinequalities) are suitable choices for a cutting
plane approach, i.e., we want to find a tighter LP-relaxation of the IP (2.1) than the one
following from (2.1) by dropping the integrality constraints (iv). To do this, we define
the following polytope. Let G (V, E) be a graph, let Ev st ls, V, s 4: }, and let
r, k, d e Z +v be given. Then

(3.1) CON (G;r,k,d)=-conv {xeRel x satisfies(i), ,(iv) of(2.1 }

is the polytope associated with the network design problem given by G and the edge and
node survivability requirements r, k, and d. (Above "conv" denotes the convex hull
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operator.) In the sequel we will study CON (G; r, k, d) for various special choices of r,
k, and d. Let us mention here a few general properties ofCON (G; r, k, d) that are easy
to derive.

Let G (V, E), r, k, d Z+V be given as above. Extending the terminology
of Bollobas (1978), we say that e e E is essential with respect to (G; r, k, d) (short:
(G; r, k, d)- essential) if CON (G e; r, k, d) . In other words, e is essential with
respect to (G; r, k, d) if its deletion from G results in a graph such that at least one
of the survivability requirements cannot be satisfied. We denote the set of edges in E
that are essential with respect to (G; r, k, d) by ES (G; r, k, d). Clearly, for all sub-
sets F

_
E\ES (G; r, k, d), ES (G; r, k, d)

___
ES (G F; r, k, d) holds. Let dim (S)

denote the dimension of a set S
_
Rn, i.e., the maximum number of affinely independent

elements in S minus 1.
THEOREM 3.2. Let G (V,E) be a graph and r, k, d eZ+ such that

CON G r, k, d) 4 . Then

CON(G;r,k,d)_{xeREIxe =1 foralleeES(G;r,k,d)},
dim (CON (G;r,k,d))= IEI- IES(G;r,k,d)l.

Proof. If e E is (G; r, k, d)-essential then every vector x e CON (G; r, k, d)
clearly satisfies Xe 1. So CON (G; r, k, d) is contained in the afflne space ofdimension
]El ]ES (G; r, k, d)] defined by the equations xe= 1, e e ES (G; r, k, d). Let
a Tx c be an equation satisfied by all points in CON (G; r, k, d). We may assume
that ae 0 for all e e ES (G; r, k, d). If e e E\ES (G; r, k, d) then the incidence vec-
tors of E and E\ {e} are contained in CON (G; r, k, d), and thus a TxE a rxE\eI
c holds. This implies ae 0 for all e E\ES (G; r, k, d) and hence a 0. Therefore,
dim CON (G; r, k, d) E[ ES (G; r, k, d)[. U]

An inequality a rx -< c is valid with respect to a polyhedron P ifP
_

{ x] a rx _-< c }
the set Fa {x P]arx c} is called the face ofP defined by aTx <= c. If dim (Fa)
dim (P) and Fa 4 0 then Fa is a facet of P and arx <= c is called facet-defining or
facet-inducing.

TIEOREM 3.3. Let G=(V,E) be a graph and r, k, d eZ+ such that
CON G r, k, d) . Then

a xe <= defines afacet ofCON G r, k, d) ifand only ife E\ES G; r, k, d);
b x >= 0 defines a facet ofCON (G; r, k, d) ifand only ife E\ES (G; r, k, d)

and ES (G; r, k, d) ES ((7 e; r, k, d).
Proof. By Theorem (3.2), none of the inequalities 0 =< Xe -< 1, e e ES (G; r, k, d),

defines a facet of CON (G; r, k, d).
(a) If e e E\ES (G; r, k, d) then the incidence vectors ofE and E\ {f }, for each

f E\(ES G; r, k, d) U {e } ), satisfy Xe <- with equality and are linearly independent.
Thus Xe =< defines a facet of CON (G; r, k, d).

(b) Suppose e E\ES (G; r, k, d). If there is an edge f e ES(G e; r, k, d)\
ES (G; r, k, d) then, for all x e CON (G; r, k, d), Xe 0 implies xf 1; thus x >= 0
does not define a facet of CON (G; r, k, d). If ES (G; r, k, d) ES (G e; r, k, d)
then let a rx >= c be a facet-defining inequality satisfied by all

xeF=- {xeCON (G;r,k,d)l xe=O }.

By Theorem 3.2 we may assume that ag=O for all geES(G;r,k,d). Let fe
E\(ES (G; r, k, d) U {e } ), then the incidence vectors of E\ {e } and E\ {e,f }
are by assumption in CON (G; r, k, d) and satisfy a Vx c. This implies af 0. It fol-
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lows that arx >= a is a positive multiple of Xe >= O, and thus, Xe >= 0 defines a facet of
CON (G; r, k, d).

Theorems 3.2 and 3.3 solve the dimension problem and characterize the trivial
facets. However, these characterizations are (in a certain sense) algorithmically intractible
as the next observation shows.

Remark 3.4. The following three problems are NP-hard.
Instance: A graph G (V, E) and vectors r, k d
Question 1" Is CON (G; r, k, d) empty?
Question 2: Is e E an element of ES (G; r, k, d)?
Question 3: What is the dimension of CON (G; r, k, d)?
Proof. Clearly, if we have shown that the first problem is NP-hard, the definition

of "essential" and Theorem 3.2 immediately imply that the other two problems are
difficult as well.

The NP-hardness of Question follows directly from a recent result of Ling and
Kameda (1987). They proved that the following problem is NP-complete.

Instance: A simple graph G (V, E); two nodes u, v 6 V, u 4: v; two nonnegative
integers a and b.

Question: Does there exist a subset Z
_
V with Z[ a and u, v a Z such that

G Z contains at most b edge disjoint [u, v]-paths?
Suppose we could determine in polynomial time whether CON (G; r, k, d) is empty for
the following (very special) choice of r, k, d 6 Z +v; r 0; kuv a and kst 0 otherwise;
du, b + and dst 0 otherwise. Then we could obviously answer the above question
in polynomial time.

However, for most cases of practical interest in the design of optical fiber networks,
the sets ES (G; r, k, d) of essential edges can be determined easily, and thus the trivial
LP-relaxation of (2.1) following from (3.2) and (3.3) can be set up without difficulties.
(We will comment on this in the sequel.)

In fact, if we can determine ES (G; r, k, d), we can decompose min cVx, x
CON (G; r, k, d) into several subproblems as follows. IfG 1, Gp are the components
of G ES (G; r, k, d) then it is possible to compute vectors r i, k i, d (i 1, p)
such that G contains no (Gi; ri, k;, di)-essential elements and such that the incidence
vector of F-- Fx’ tO Fx2 to to Fxp tO ES (G; r, k, d) is an optimum solution of
min cVx, x CON (G; r, k, d), where x is an optimum solution of min (ci)Vx,
x eCON(G;; ri, ki, di) and c is a projection of c into an appropriate space
(i 1, p). The exact procedure is best described in an algorithmic framework, and
we leave the details to a forthcoming paper on this subject.

The procedure outlined above shows that we can confine ourselves to the case that
CON (G; r, k, d) is full-dimensional, and we will do so in the following. There is another
(technical) reason for this. If polyhedra are not full-dimensional, statements about non-
redundancy of certain systems often become quite ugly due to the necessity to exclude
equivalent inequalities. This is also true in our case. It is not difficult to derive the results
for the lower dimensional cases from the results presented later. But the statements of
these theorems are often rather complicated and we want to avoid unnecessary techni-
calities-there are enough technicalities in this paper anyway.

Before continuing let us remark that there is an easy way to improve upon the
formulation of(2.1) by excluding a number ofinequalities that are obviously redundant.

Given G (V, E) and r, k, d e Z +, let us extend the functions r and d to functions
operating on sets by setting

(3.5) r( W)---max { rstlSe W, te V\W} for W_ V
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and

(3.6) d(Z, W)---max {ds, lse w, te v\(zu W),ks,>-_ IZl} for Z, W_ V.

We call a pair (Z, W), Z, W_ V, eligible (with respect to k) if Z f3 W= and
]Z] kst for at least one pair of nodes with s e W and e V\(ZU W). Then
CON (G; r, k, d) is clearly contained in the solution set of the following system of
equations and inequalities.

(3.7) (i) xij>= r(W)
i Wje V\W

for all W_ V, 5 4 W4= V;

(ii) Z Z
ia Wj V\( WU Z)

xo. >= d(Z, W) for all eligible pairs (Z, W)
of subsets of V;

(iii) x0 _-<

(iv) xo=
(v) xo >-- 0

for all/j e EkES (G; r, k, d);

for all ij ES (G; r, k, d);

for all ij e E\ES (G; r, k, d) with
ES (G; r, k, d) ES (G e; r, k, d).

In the subsequent sections ofthis paper we will investigate in more detail these and other
inequalities for special choices of r, k, and d.

4. Connectivity. We will now consider one ofthe easiest special cases of our network
design problem (2.1). This case, however, will provide further insight and yield a new
class of interesting inequalities.

Given a graph G (V, E) and W
_

V, the edge set

6(W)=- { ijeElie W,j V\W}
is called the cut (induced by W). (We will write 5(W) to make clear--in case of pos-
sible ambiguitieswith respect to which graph the cut induced by Wis considered.) For
W, W’e Vwith W G W’= we define [W: W’]-- {ij e Eli W, j W’}. So
5(W) [W: V\W]. For W_ Vwe set E(W) ij e E[i,j e W}.

In this section we assume that the underlying graph G (V, E) is connected. As
before, multiple edges are allowed, but loops are not. Let I be the vector (of appropriate
dimension) with all components equal to 1. Set

(4.1) CON (G) := CON (G; 1,0, 0).

In other words, CON (G) is the convex hull of all feasible solutions of the system

(4.2) (i) x(5(W))>= forall W_ V,4: W4: V;

(ii) O<=Xe <- for all eeE;

(iii) X { 0, for all ee E,

where, from now on, we use the symbol x(F) to abbreviate the sum eFXe. Another
way to state (4.1) is

CON (G) =conv { xFe RE (V, F) is a connected subgraph ofG }.
That is why we call CON (G) the connected subgraph polytope ofG. It is easy (and well
known how) to solve

(4.3) min crx,xeCON G).
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This goes as follows. Let F be the set of edges e with nonpositive weight Ce. If (V, F) is
connected, stop. Otherwise contract the components of(V, F) to single nodes and compute
a minimum spanning tree T in the resulting graph. T t_J F yields an optimum solution
to (4.3). It is also well known that the solution set of the LP-relaxation of (4.2), i.e., the
polyhedron defined by (i), (ii) of (4.2), is not integral in general, and that a complete
linear description of CON (G) can be easily derived (see e.g., Cornu6jols, Fonlupt, and
Naddef (1985)) from Edmonds’ characterization of matroid polytopes--see Edmonds
1970, 1971 ). We give this transformation here for sake of completeness.

Recall that the bases of the graphic matroid on G are the spanning trees of G, that
the bases of the cographic matroid are the complements of spanning trees, and that a set
is independent in a matroid if it is contained in a basis. Let r (r*, respectively) denote
the rank function of the graphic (cographic, respectively) matroid on G (V, E). Then,
for F E, r(F) V[ CF, where CF is the number of components of (V, F), and

(4.4) r*(F) FI + r(E\F) r(E) FI- VI + + r(E\F).

Let IND * (G) be the convex hull ofthe incidence vectors XF, where F
___
E is independent

in the cographic matroid of G, i.e.,

(4.5) IND * (G) -conv { xF R[ spanning tree T such that F
_
E\ T}.

The above definitions imply:

(4.6) CON (G)-- { 1 --yREI yIND* (G)),

(4.7) IND* (G) {I--xeREIxeCON (G)}.
A subset F

___
E is called r*-closed if r*(F) < r*(F t_J {e} for all e 6 E\F, and F is

called r*-inseparable if there is no partition F, F2 of F such that r* (F) r* (F) +
r* (F2). (A family S, Sm of subsets of a set S is called a partition of S if Si 4 ,

1, m; Si fq Sj 75, <= < j <= m; and S t..J LJ Sm S.) Let B(G)
_
E

denote the set of bridges of G (a bridge is an edge that forms a cut). It follows from
Edmonds’ results on matroid polytopes that

IND* (G)= {yRE[ ye--O for all eB(G);

(4.8) ye > 0 for all e6E\B( G);

y(F)<=r*(F) for all F
_
E, with F

r*-closed and r*-inseparable }.
In fact, the linear description of IND * (G) given above is nonredundant. Using relation
(4.6) and formula (4.4) we obtain the following nonredundant description of the con-
nected subgraph polytope:

CON (G) {xREI Xe-- for all e6B(G);

(4.9)
x(F) >= VI r(E\F)

for all e6E\B(G);

for all FE with F
r*-closed and
r*-inseparable }.

Observe that the bridges of a graph are exactly the G; 1,0, 0)-essential edges and recall
that a connected graph is bridgeless if and only if it is 2-edge connected. It is a nice
exercise to translate the matroid properties "r*-closed" and "r*-inseparable" into the
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language of graph theory. The result (ignoring the technical details coming up by con-
sidering bridges) is the following theorem.

THEOREM 4.10. Let G (V, E) be a 2-edge connected graph. Then CON G) is

full-dimensional and
p

(i) - 1 x( 6(Vi) p for all partitions V, Vp of V, p >= 2, such that
each subgraph Vi, E(Vi) is 2-edge connected
and the graph obtained by contracting every Vi,

1, p to a single node is 2-node connected;

(ii) xe --< for all e E;

(iii) Xe -> 0 for all e E such that G e) is 2-edge connected

is a complete and nonredundant linear characterization ofCON (G). Vl
Since we can optimize any linear function over CON (G) in polynomial time, it

follows from the ellipsoid method (see Grrtschel, Lovfisz, and Schrijver 1981, 1988))
that the separation problem for the linear system (i)-(iii) of (4.10) can be solved in
polynomial time. In fact, a specialization of Cunningham’s algorithm for the separation
problem for matroid polytopes (see Cunningham (1984)) yields a combinatorial sepa-
ration algorithm for this system.

5. Steiner trees. Let G (V, E) be a connected graph, and let S, IS[ >= 2, be a
subset ofthe node set. S is called the set ofterminal nodes, V\S is called the set ofSteiner
nodes. Define a vector rs Z e+v by setting r for all s, 6 S, s and r 0 else,
and let

(5.1) CON (G;S) CON (G;rS, O,O).

Then CON (G; S) is the convex hull of all incidence vectors XF such that all nodes in S
belong to the same component of (V, F). Another way to say this is that CON (G; S) is
the convex hull of all incidence vectors XF where F contains a Steiner tree of G (with
V\S being the set of Steiner nodes). Thus for c e Re+ every optimum vertex solution of

(5.2) min cTx, x CON (G; S)

yields an optimum Steiner tree. The LP-relaxation for (5.2) that is provided by (2.1),
respectively, (3.7) and our special choice of r, k, and d has the following constraints:

(5.3) (i) x(6(W)) >_- for all W
_
V such that

W f3 S 4= and S\W 4= ;
(ii) 0 =< xe =< for all e E.

For SI 2, say S { s, }, the integral solutions of (5.3) are precisely the incidence
vectors of edge sets F E that contain an s, ]-path. In fact, it is easy to derive from
any shortest path algorithm that the polyhedron defined by (5.3) is integral; thus in case
IS[ 2, CON (G; S) {x R[x satisfies (5.3) (i) and (ii) holds.

Let us call an edge e E a Steiner bridge if G e contains no s, ]-path for some
nodes s, S. We denote the set ofSteiner bridges of a graph G by B(G; S). It is easy
to see that B(G; S) ES(G; rs, 0, 0). For S Vthe Steiner bridges are just the bridges
of G, i.e., B(G; V) B(G); for IS[ 2, say S {s, t}, the Steiner bridges are the
edges that are on every [s, t]-path, Such edges are called [s, ]-bridges. Let us denote
the subgraph ofG induced bythe node set Wby G[W], i.e., G[W] (W, E(W)). Using
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this terminology, a nonredundant characterization of the convex hull of the incidence
vectors of edge sets containing an [s, t]-path can be derived easily.

THEOREM 5.4. Let G (V, E) be a connected graph, let s, V be two dif-
ferent nodes and assume that G contains no [s, t]-bridge. Then the dimension of
CON (G; { s, } is equal to E] and thefollowing system is a complete and nonredundant
characterization ofCON (G; { s, }):

(i) x(6(W)) >= for all cuts 6(W) such that
s6 W, t6 V\W,
and G[ W] and G[ V\ W] are connected;

(ii) Xe =< for all e E;

(iii) xe >= 0 for all e E such that G e contains no [s, t]-bridge.

The system (5.3) is in general not a complete description of CON (G; S) if S
is any set of terminal nodes with S[ >-_ 3 and G a general graph, not even for the other
"extreme and simple" case where S V, as Theorem (4.10) shows (note that
CON (G) CON (G; V)).

A natural way to generalize the system given in (4.10) to the Steiner tree problem
is to consider the following system of inequalities:

p

(i) iZl: x((Vi) )" p for all partitions V1, Vp of V, p >- 2,
such that Vi f-) S >= for 1, p;

(ii) 0 <=Xe for all e E.

Clearly, all inequalities of the system (5.5) are valid for CON (G; S); butmas ob-
served by White, Farber, and Pulleyblank (1985)mthey are not sufficient to describe
CON (G; S), not even for graphs as simple as series-parallel graphs.

System (5.5) seems, however, to be a reasonable LP-relaxation of the Steiner tree
problem as the following result shows.

THEOREM 5.6. Let G V, E) be a connected graph, let S
_
V be a set ofterminal

nodes and assume that G contains no Steiner bridge. Let V Vp, p >= 2, be a partition

of V such that Vi fq S 4: for 1, p. Then
p

x((v,.))>p
2i=1

defines afacet ofCON (G;S) ifand only if
(a) G Vi] is connectedfor 1, p;
b G[ Vi] contains no Steiner bridge with respect to the set Si := S N V,. ofterminal

nodesfor 1, p;
c the graph 12, ) obtainedfrom G by contracting each node set Vi to single

node is 2-node connected.
(Comment: If ISi[ 1, no edge of G[Vi] is a Steiner bridge.)
Proof. Suppose one of the graphs G[ V,.], say G[ V], is not connected. Let V’ be

the node set of a component of G[V1] such that (VI \V{) N S 4: . Since G is connected
there is a node set Vj., j 6 { 2, p ), say V2, such that V’ and V2 are connected by an
edge. But then the inequality 1/2(x(6(V\V{)) + x(6(V2 [..J V{)) q- "ff]/P= x(6(Vi)) P-

belongs to class (5.5) (ii) and its sum with Xe > 0 for all e 6 [V’ V2] is equal to
x((vi))>i= p So the latter inequality does not define a facet. We may thus

assume that G[ Vi] is connected for all i.
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Suppose G IV,.], for some e { 1,... p}, contains a Steiner bridge, say e, with
respect to Si. We will show that every D c_ E with Xz CON (G; S) and satisfying
arx-- 1/2 " x(6(Vi)) >i= p with equality contains e. This implies that a TX >= p
does not define a facet. Suppose there exists D E\ {e } with :D CON (G; S) and

atD p 1. Since e is a Steiner bridge of G[ V;], D must contain a path linking two
Steiner nodes contained in different components of G[Vi] e. Thus D’ D tO E(V,.)
satisfies X D’ CON (G; S) and a TXD’ p and contains a cycle C containing e and
an edge, sayf, of 6(Vi). But then D" (D’\ {f}) U {e} satisfies ;D, CON (G; S) and
a TX D" p 2, a contradiction.

Suppose 0 is not 2-node connected. Let I7" { Vl, vp }, where v is the node
obtained by contracting V, 1, p. We may assume that Vl is a cut-node such
that {v2,..., vc} is the node set of one component of -v. Set W-= V tO
f= x((v)) >c+ viand W2--- V U tOf=2 vi Then 1/2 Z";=l p is the sum of
the two valid inequalities 1/2 (x( 6 W )) + Z f= 2 x(6 (V,.))) >= c and 1/2 (x( 6 (W2)) +
=+ x((v,.))) >_- p- c.

This shows that if one of the conditions (a), (b), (c) is not satisfied then the given
inequality does not define a facet of CON (G; S).

Now let arx 1/2 ,P x(6(Vi)) >i= p be an inequality of type (5 5 (ii) such
that (a), (b), and (c) are satisfied. Let b rx be an equation such that Fa--
{x e CON (G; S)I arx p } c_ Fb {x CON (G; S)lbrx } and such that Fb
is a facet ofCON (G; S).

Note that, by construction, every spanning tree T of 0 corresponds to a forest (also
denoted by T) of G such that, for each subset B ofA Upi= E(Vi), the incidence vector
of B tO T satisfies a rx >= p with equality.

We first prove that be 0 for all e e A. Let e e E(Vi) for some e { 1, p }.
Choose two nodes s S 71 Vi and S 71 (V\ Vi). Since G contains no Steiner bridge
there exists an [s, t]-path P in G not containing e. Choose an edge f P 71 6(Vi) and
construct a spanning tree T of 0 containing f. Set D T tO A and De -- D\ { e }. Since
G V is connected for everyj and since e is not a Steiner bridge of G V,.], by construction,
xz, x ze CON G; S) and a rxz a rx Ze p 1. Thus b rx:z b rx: Ze which implies
b- 0o

Let e, f be different elements of/(= E\A). Since 0 is 2-node connected there
exists a cycle C of ( containing e andf. Let Tbe a spanning tree of 0 containing C \ { e }
(but not f). Then T’ (T\ { e tO f } is also a spanning tree of (. Set D T tO A
and D’ T’ tO A. Clearly z, Xz, CON (G; S) and 0 b rxz b rx z), be bf. This
implies that brx is a multiple of arx which proves that arx >_- p defines a facet of
CON (6; S). 3

Theorems 3.2, 3.3, and 5.6 immediately give the following result.
COROILARY 5.7. Let G V, E) be a connected graph, S

_
V a set ofat least two

terminal nodes and assume that G contains no Steiner bridge. Then dim (CON (G;S))
]EI and thefollowing system is a nonredundant system offacet-defining inequalitiesfor
CON (G; S):

(i) x(a(V)) >= p
i=1

for all partitions V1, Vp of V, p >= 2,
such that J is 2-node connected and,
for 1, p, V f3 S 4 and
G Vi] is connected and contains no Steiner
bridge with respect to V 71 S;

(ii) Xe <= for all e E;
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(iii) X 0 for all e E such that G e
contains no Steiner bridge.

Note that the nonredundancy parts of Theorems 4.10 and 5.4 follow directly from
Corollary (5.7).

Based on the paper of Prodon, Liebling, and Gr6flin (1985), Prodon (1985) has
generalized the inequality system (5.5) (i) for CON (G; S) to the system (5.9) defined
below. We give a polyhedral proof of the validity of these inequalities.

PROPOSITION 5.8. Let G (V, E) be a graph and S
_

V, IS] >= 2, a set ofterminal
nodes. Let be a set ofsubsets of V such that

(a) >--
(b) US# forallU,
(c) u) s
For each edge e uv E, set

and define

A(;e,u,v)=- ]{ Us]uU,vU}[,

ae()--- max { A( o; e, u, v), A(; e, v, u) }

a()=(ae())eERE.
Then

(5.9) a()Tx >=
is valid with respect to CON (G;S).

Proof. We prove the validity of (5.9) by induction on I1. For I1 1, say
W}, (5.9) is nothing but the (valid) cut inequality x( (W)) already considered

in (5.3) (i).
We now assume that 5.9 is valid for CON G; S) for all set systems satisfying (a),

(b), (c) with at most p elements. Let 2 v be a set system satisfying (a), (b),
(c) with p + elements. For ease of notation, let us set V V(u U).

Let I be the set of all (unordered) pairs { U, W } with U, W , such that there
is an edge e E with one endnode in U (or in W) and the other endnode in WU (or
in UW). Moreover, let J be the set of nodesets U e ff such that there exists an edge
e E with one endnode in U and the other endnode in V.

We define new set systems as follows. For { U, W } e I, set

{ { w},

and for U J, set v k { U). Clearly, each of the systems vw and has
cardinality p and satisfies (a), (b), and (c). Let

brx a(w)rX+ a()rx.
{U,W}I UJ

By induction hypothesis, the inequalities of type (5.9) associated with the systems :w
and the systems are valid for CON (G; S). Thus bTx >= ([ I1 + [Jl)p is also valid.

We will now prove (componentwise) that ([ I[ + [J[ )a()Tx >= bTx. From
this observation we can conclude that a()Vx >= (I 11 + JI)/(I 1[ + JI )p, and
thus validity of a()Vx >= [[ follows by rounding up the fight-hand side.

By definition, for every edge eE, ae()>= ae(w)>= ae()- for all
{ U, W} I, and ae() >= ae(v) >= ae() for all U J; moreover, a(vw) >=
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0 for all { U, W} I and a(ov)>_-0 for all U J. Thus, for every edge e E with
ae( 0, we have be O.

Let e uv e E be an edge with ae(o) > O.
Case 1. u, v t V.
Case l.1. A(; e, u, v) > A(; e, v, u). Set ’ { U’ e lu e U’, v q U’}. By

definition there are at least ae() sets in ’, and moreover, since v V there is at least
one set, say W’, in \’ with v e W’. Set I’ { { U’, W’}[U’ "}. Then I’

_
I and

ae(v’ w’) ae(’) for all { U’, W’ } 1’. Thus

be ae(vw)+ , ae(v)<-(llI / ]Jl)ae(------------------) II’l
{U,W}eI UeJ

(llI + IJI- 1)ae(o).

The case A(; e, v, u) > A(’; e, u, v) follows by symmetry.
Case 1.2. A(;e,v,u)= A(.;e,u,v). Let ’--{U’e[ueU’,vqU’}

and "--{U"eluqU’,veU"}. By assumption I"l ]"1 =ae(’). Set
I’=- {{ U’, U"}IU’ ’, U" e"}. Then II’1 ae() and ae(v,v,)=
ae() for all { U’, U" I’. This implies as before be <= ([ I[ + J[ )ae() I’1 <=
(llI + IJI- 1)ae(’).

Case 2. eb(V),sayu V\Vandv V. Let’--- {Ulu U}.Thenby
definition ae(.) A(; e, u, v) ]’[ and ’

_
J. Obviously, ae() ae()

for all U ", and hence

be(I II /lJl)ae()-Io’l <-(I I1 +lJI- 1)ae().

This finishes the proof. E]

It is easy to find some necessary conditions for an inequality (5.9) to define a facet
of CON (G). But it is currently unknown which of the inequalities (5.9) defines facets
of CON (G; S).

Given a graph G (V, E), a node set S
_

V, and a vector y Re (we may assume
0 _-< y _-< 1 ), it is easy to solve the separation problem for y and the inequality system
(5.3) (i) by computing a Gomory-Hu tree for the graph G (V, E) with the values Ye,
e 6 E, considered as edge capacities. (The Gomory-Hu method for finding a minimum
capacity cut is, for instance, described in Hu (1969) or Gr6tschel, Lovfisz, and Schrijver
(1988).) The Gomory-Hu tree contains an edge with capacity smaller than one whose
removal separates two nodes in S if and only if y violates at least one of the inequalities
(5.3) (i). This implies (see, e.g., Gr6tschel, Lovfisz, and Schrijver 1988 )) that the LP-
relaxation of (5.2) coming from (5.3) can be solved in polynomial time.

The Gomory-Hu tree can be used to find some violated inequalities of type (5.5)
(i) heuristically. But a polynomial time separation procedure for the system (5.5) is not
known. The same holds for Prodon’s system of inequalities defined in Proposition 5.8.

6. Edge connectivity. By setting rst k (k a positive integer), and dst =-- kst 0 for
all s, V, s we obtain the following special case of (2.1), respectively 3.7)"

(6.1) min crx
(i) x(6(W))>-_k for allW___ V,4: W4: V;

(ii) 0 =< Xe =< for all e E;

(iii) Xe {0, 1} for all e 6 E.

The feasible solutions of (6.1) are exactly the incidence vectors of all edge sets C
_
E

such that (V, C) is k-edge connected (i.e., every pair of nodes of G is linked by k edge
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disjoint paths). So (6.1) is asking for a minimum cost spanning k-edge connected subgraph
of G. To simplify notation in the following, we will just speak of a k-edge connected
edge set C and mean that (V, C) is a (spanning) k-edge connected subgraph of G. Let
us set

ECON (G;k) conv{ xc REl( V, C) is k-edge connected }.
ECON (G; k) is called the polytope ofk-edge connected subgraphs ofG. Clearly, ECON
(G; k) CON (G; kl, 0, 0), and for k 1, we have ECON (G; 1) CON (G)msee

4. The dominant of this polytope, i.e., the polyhedron ECON (G; k) + R+, has been
considered in Cornu6jols, Fonlupt, and Naddef( 1985 )who showed, among other results,
that ECON (G; 2) + R+ {x e RE[ x >= O, x(6(W)) >= 2 for all W_ V, 4 W4: V}
if G is series-parallel.

We will now give a technical characterization of those inequalities of type (6.1) (i)
that define facets of ECON (G; k). To do this we introduce further notation. An edge e
of a graph G (V, E) is called k-edge-essential if G e is not k-edge connected. So the
k-edge-essential edges of G are exactly the edges that are (G; kl, 0, 0)-essential. By
Theorem (3.2), ECON (G; k) has dimension EI if and only if G is k-edge connected
and contains no k-edge-essential edge. By Menger’s theorem the latter condition is equiv-
alent to G and is (k + )-edge connected.

THEOREM 6.2. Let G (V, E) be a (k + )-edge connected graph, k >= 1. Then,
forW_ V,4 W4 V,

x(a(W))>=k

defines a facet of ECON (G; k) ifand only if
(a) for each edge e E\6(W), there exists a set C

_
6(W) such that

(a) ]C] k, and
(a2) C U (E\(6(W) U {e})) is k-edge connected; and

(b) there exist edge sets C, Cs 6(W), where s 16(W)I, such that
(b) ]Ci[ =k,i= 1,..-,s,
(b2) Ci U (E\(6(W)) is k-edge connected, and
(b3) the s s-matrix M whose columns are the incidence vectors x ci RW)

is nonsingular.
Proof. Suppose (a) and (b) are satisfied. Set aTx x(6(W)) and let b’x >= de-

fine a facet Fb ofECON (G; k) that contains the face Fa {x ECON (G; k)la’x k}.
Let e E\6(W) and let Ce C U (E\(6(W) U {e})) be the k-edge connected

subset of E existing by (a). Then D Ce U e } is also k-edge connected and, by (a)
we have a TX ce a vxz k. Thus, since Fa Fb, b VX ce b vxz holds. This implies be
0. It follows that be 0 for all e E\6(W).

The incidence vectors of the k-edge connected sets Di C; U (E\6(W)),
1, s, satisfy aVX zi k and hence bTxz /3. Consider the equation yVM 1 .
Clearly, the vectors (/3/k)l v and v in Raw) (where b is the vector obtained from b by
deleting the components E\6(W)) are solutions ofthis equation. SinceMis nonsingular,
b (/3/k)l has to hold. This implies that a (k/{3) , and thus, aTx >= k defines a facet
of ECON (G; k).

If (a) does not hold then there is an edge e E\6(W) such that, for no subset C of
6(W) with C] k, the set C U (E\(6(W) U {e } )) is k-edge connected. Hence either
no k-edge connected edge set satisfies x(6(W)) _-> kwith equality (and thus this inequality
does not define a facet) or every k-edge connected subset D

___
E with [D f-) 6(W)] k

contains e. Therefore {x ECON (G;k)[x(6(W)) k}
___
{x ECON (G;k)lxe 1}

and x(6(W)) >= k does not define a facet.
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If (b) does not hold, then the set of vertices contained in the face

F-= {xeECON (G;k)I x(a(W)) k}
is not linearly independent. Hence, as ECON (G; k) is full-dimensional, F is not a facet
of ECON G; k).

Theorem 6.2 is merely of technical interest and does not provide insight into the
graph theoretical properties that make an inequality x(6(W)) >_- k a facet-defining one.
In fact, in contrast to our earlier belief, there seems no easy way to use connectivity prop-
erties only to decide whether or not such an inequality defines a facet of ECON (G; k).
This will become clear by the following observations.

PROPOSITION 6.3. Let G (V, E) be (k + 1)-edge connected, k >-2, and
V with ;5 4: W4: V such that G[ W] and G[ V\ W] are k-edge connected. Then
x(6(W)) >= k defines a facet of ECON (G; k).

Proof. We first show that (a) of Theorem 6.2 is satisfied. Let e uv e E\6(W),
say e E(W). If G’ G[W] e is k-edge connected then C U (E\(6(W) U {e})) is
k-edge connected for every set C c__ 6(W) with [C[ k. So let us assume that X(G’)
k- 1. This implies that G’ contains a cut of cardinality k that separates u and v.
Among all node sets Wu, Wv c_ W with Wu 71 Wv such that u e Wu, v e Wv, e
a(Wu), ee 6(Wv), 6G,(Wu)] [SG,(Wv)[ k- (note that such sets exist) we choose
Wu and W such that Wu and W have cardinality as small as possible. Since G is
(k + )-edge connected there exists an edge f e E with one endnode in Wu and the
other in V\ W, and one edge g e E with one endnode in Wv and the other in V\ W.
Let C be any subset of 6(W) with [C[ k and f, g e C. (Here k >_- 2 is needed.) We
claim that D C U (E\(6(W) U {e})) is k-edge connected. Suppose not; then there
must be a cut 6(Z) in G" (V, D) with k or fewer edges. It follows from our as-
sumptions that 6G,(Z) does not separate any two nodes of V\W, that it must separate
u and v (so we may assume that u e Z) and that 6G,(Z)[ k 1. Since the cut car-
dinality function [6G, is submodular on the subsets of nodes of G’ we obtain 2k-
2 >-[6G,(Wu)[ + [6G,(Z)[ >= 16G,(Wu71 Z)] + ]6G,(WU Z)]. As laG’(X)I >----k-
for all cuts in G’ we can conclude that aG,(Wu fq Z)[ k 1, and thus by the choice
of Wu, we have Wu Wu 71 Z. But then f e aG,(Z) and thus [6G,(Z)[ >= k, a contra-
diction. This proves that (a) of (6.2) is satisfied.

For every C c_ 6(W) with [C] k, C U (E\b(W)) is k-edge connected and the
matrix whose columns are the incidence vectors of all possible k-element subsets of6(W)
has obviously full row rank. Thus a matrix M as required by (b) of (6.2) exists. Hence
the theorem follows from (6.2). []

The next example shows that the connectivity requirements on G[W] and G[V\W]
cannot be weakened. They are, in a sense, best possible.

Example 6.4. Let k >= and G1 (V1, E be a minimal (k )-edge connected
graph (i.e., G is (k )-edge connected and each edge is (k )-edge essential) with
at least k + nodes of degree k 1. (Such graphs exist for all large enough orders.) Let
G be the graph obtained from the disjoint union of G and the complete graph Kk +

(V2, E2) of order k + by adding all edges that link a node in G to a node in Kk+5.
G is clearly (k + )-edge connected. The inequality x(6(V))>= k does not define a
facet ofECON (G; k), since there is no set C ___/(V) with ICI k such that CU E U
E2 is k-edge connected (because at least one node in (V U V2, C U E U E2) has degree
k-).

On the other hand a cut inequality may define a facet of ECON (G k) even if
G[W] and G[V\W] are not highly connected as the next example shows.

Example 6.5. Consider four complete graphs on node sets A, B, C, D with k >= 4
nodes. Link all nodes in A U B to all nodes in C U D, add a set of[k/2] + node disjoint
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edges with one endnode in A and one in B, and add a set of[k/2] + node disjoint
edges with one endnode in C and the other in D. Let G (V, E) be the graph obtained
this way. G is (2k + [k/2] + )-edge connected. Let W A tAB. Then the edge (and
node) connectivity of G[W] and G[V\W] is [k/2] + 1. Using Theorem (6.2) it is easy
to show that x(6(W)) >= k defines a facet of ECON (G; k).

The above example is an extreme case. The next observation shows that the con-
nectivity of G[W] and G[V\W] cannot be smaller than [k/2] + if the associated
inequality defines a facet.

PROPOSITION 6.6. Let k >= 2, G (V, E) be a k + )-edge connected graph and
W V, # W 4: V, such that the edge connectivity ofG[ W] or G[ V\ W] is not larger
than [k\2]. Then x(6(W)) does not define a facet of ECON (G; k).

Proof. We may assume without loss ofgenerality that G[W] is k2J-edge connected
but not ([k/2] + )-edge connected. By Menger’s theorem G[W] contains an edge e
such that G[W] e is not [k/2]-edge connected. It is easy to see that each k-edge
connected edge set F

_
E with xF(6(W)) k contains edge e. Hence by Theorem 6.2,

x(6(W)) >-_ k does not define a facet of ECON (G; k). v]

Propositions 6.3 and 6.6 yield the following result for the cases k 2, 3 which are
of particular practical interest.

COROLLARY 6.7. Let k { 2, 3 } and let G V, E) be a k + )-edge connected
graph. Let W

_
V, # W # V. Then x(6(W)) >= k defines a facet of ECON (G; k) if

and only ifG[ W] and G[ V\ W] are k-edge connected.
Recall that Theorem 4.10 (or Corollary 5.7) yields that, for a 2-edge connected

graph G and for a node set W
_

V, 3 4: W 4: V, x(6(W)) >= defines a facet of ECON
(G; 1) if and only if G[W] and G[V\W] are 2-edge connected.

Given G (V, E) and y RE, 0 =< y < 1, the separation problem for y and (6.1)
(i) can be solved in polynomial time by computing a cut 6(W*), 4: W* 4: V, of
minimum capacity y(6(W* ))--for instance by the Gomory-Hu method. If y(6(W* ))
< k the vector y violates x(6 W* )) _>- k, otherwise all inequalities (6.1) (i) are satisfied
by y. Hence the LP-relaxation ofthe minimum cost k-edge connected subgraph problem
following from (6.1) (by dropping the integrality constraints (iii)) can be solved in poly-
nomial time.

7. Node connectivity. Parallel edges do not play a role in node connectivity ques-
tions. Thus we assume throughout this section that all graphs G (V, E) considered are
simple. Setting in(2.1)dst=- 1, rst=-k, and kst k k Z, <= k <= IV[ 1)for
all s, 6 V, we obtain the following integer linear program:

(7.1) min cTx
(i) x(6(W)) >= k
(ii) x(6o_z(W)) >=

(iii) 0 =< Xe <=
(iv) XeG {0, l)

for all W
_

V;

for all node sets Z
_
V with

[Z[ k and all node sets
W =_ V\Z, # W# V\Z

for all e E;

for all e E.

Clearly, every optimum solution of (7.1) is a minimum-cost spanning k-node connected
subgraph of G. The polytope

NCON (G;k)- conv{ C6RE[ (V, C) is k-node connected }
is called the polytope ofk-node connected (or just k-connected) subgraphs of G. For k

this polytope coincides with ECON (G; and CON (G). Note that NCON (G; k)
__
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ECON G; k). Using the observations of 4 we can immediately strengthen (7.1) to the
following ILP:

(7.2) min cTx
(i) x(6(W)) >= k

p

(ii) iEl= X(G_z(Vi) p

(iii) 0 Xe <=
(iv) Xe E {0, l}

for all We_ V, 4: W4: V;

for all Z
___
V with IZ] k-

and all nontrivial partitions
V, ..., Vp of V\Z,p >= 2;

for all e E E;

for all e e E.

It follows from our remarks in 6 that the separation problem for (7.2) (i) and (iii) can
be solved in polynomial time. Our remarks in 4 imply that the separation problem for
(7.2) (ii) and (iii) can be solved in polynomial time for every fixed node set Z. Thus,
for k fixed, the separation problem for (ii) and hence the LP-relaxation of (7.2) are
solvable in polynomial time.

We will now investigate NCON (G; k) and find out which of the inequalities of
(7.2) induce facets of the polytope of k-node connected subgraphs.

We will call an edge e of a graph G (V, E) k-node essential if G e is not k-node
connected. The k-node-essential edges of G are thus precisely the (G; kl, (k 1, 1 )-
essential edges of G. By Theorem 3.2, NCON (G; k) has dimension [EI if and only if
G is k-node connected and contains no k-node-essential edge. In particular, NCON
(G; k) has dimension [E[ if G is (k + )-node connected.

The results of 6 concerning the cut inequalities x(b(W)) >- k for ECON (G; k)
carry over to the case of node connectivity. Only minor modifications in the proofs and
examples have to be made. We thus only summarize these observations and give no
proofs. The main proof technique is an appropriate modification of Theorem 6.2.

THEOREM 7.3. (a) Let G V, E) be a k-node connected graph, k >- 2, without k-
node-essential edge and let W

_
V, 4 W 4 V, such that G[ W] and G[ V\ W] are k-

node connected. Then x(b(W)) >= k defines a facet of NCON (G; k), cf. (6.3).
(b) Ifx(6(W)) >- k defines afacet of NCON (G; k), where G (V, E) is a k-node

connected graph, k >= 2, without k-node-essential edge and W c_ V, 4 W 4 V, then,
for each e E(W) andfor eachfe E(V\W), K( G([WI { e } and K( G[V\W] {f }
are at least k/2, cf 6.6 ).

c For every k >= 1, there are k + )-node connected graphs G V, E) and sets
W
_
Vsuch that G[ W] is (k )-node connected, G[ V\ l/V] is (k + )-node connected

and such that x(b(W)) >- k does not define a facet of NCON (G; k), cf. (6.4).
(d) For every k >-4, there are (k + 1)-node connected graphs G (V, E) and

sets W_ V such that (G[W]) and (G[V\W]) are equal to [k/2] + and such that
x(6(W)) >= k defines a facet of NCON (G; k), cf. (6.5).

We will now give a technical characterization of those inequalities (7.2) (ii) that
define facets of NCON (G; k).

THEOREM 7.4. Let k >- and let G V, E) be a k-node connected graph without
k-node-essential edge. Let Z V with [Z[ k and let V, Vp, p > 2, be a
partition of V\Z. Let E’=- E(V) U U E(Vp) U E(Z) U 6(Z) and let (z, )
be the graph obtainedfrom G by deleting Z and contracting V, Vp. Then

p

i1= X( 6a Z( Vi x(E\E’) x(E) >p
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defines a facet of NCON (G; k) ifand only if
(a) for each edge e E’ there exists a spanning tree T in (J such that T U E’\ { e }

is k-node connected; and
(b) there exists a set T, Ts ofspanning trees in , where s :1, such that"
(b) Ti U E’ is k-node connected, and
(b2) the s s-matrix M whose columns are the incidence vectors x ri R is non-

singular.
Proof. Let Z Vwith ]Z[ k- and a partition V, Vp of V\Z, p >= 2,

be given. Set aTx 1/2 E pi= X(G-Z(Vi)), Fa {x NCON (G; k)[aTx p } and
let us call an edge set C

_
E tight if (V, C) is k-node connected and a rxc p 1, i.e.,

if xc 6 Fa. Note that E E’t3/, and since G is k-node connected and without k-node-
essential edge, ( is 2-edge connected.

Suppose (a) and (b) hold and that brx >= defines a facet Fb of NCON (G; k)
containing Fa. Condition (a) implies that, for each edge e e E’, there exists a spanning
tree Tin 0 such that Ce TU E’\ { e } is k-node connected. Since ICe 71U,P.= 6G- z( V/)[
p we can conclude that Ce is tight, hence, since Fa

_
Fb, b rx Ce /3 holds. But, for

C’e Ce U e }, we also have a rX c; p and thus b rx c; =/3. This implies b rx ce
b rxc and hence be 0 for each e e E’.

Di Ti U E’ is tight for 1, s by (b). The equation yrM 1 r is solved
by the vectors (/3/(p ))1 r and b r of RE (where is the vector obtained from b by
deleting the components E’). Since M is nonsingular, we have r (/3/(p ))1 r.
Clearly/3/(p =/= 0, and thus we can conclude that a ((p )//3)b which implies
that Fdefines a facet of NCON (G; k).

If (a) does not hold then there is either no tight set at all (and hence a rx >_- p
does not define a facet) or there is an edge e e E’ such that each tight set C

_
E contains

e. This implies that F
_

{ x e NCON (G; k)[xe 1} and hence Fa does not define a
facet. If (b) does not hold then the set of vertices contained in the face Fa does not span
a hyperplane of RE, and thus, as NCON (G; k) has dimension [EI, F is not a facet of
NCON (G; k).

As in the case of Theorem 6.2 we see no way to translate conditions (a) and (b) of
Theorem 7.4 equivalently into nice graph theoretical properties, in particular, into con-
nectivity requirements. An easy consequence of Theorem 7.4 is the following.

THEOREM 7.5. Let G V, E) be a k-node connected graph, k > 1, without k-node-
essential edge. Let Z V with [Z[ k 1, and let V, Vp, p >= 2, be a partition

of V\Z. IfG[Z U Vi] e is k-node connectedfor every edge e in G[ Vi U Z] andfor
every { p } and if (, ) is 2-node connected then 1/2 p x(6G_ z(V/)) >i=1

p- defines a facet of NCON (G; k).
Proof. To prove (b) of Theorem 7.4 we first show that for every spanning tree

T of O=(G-Z)/V/.../Vp the edge set C--TUE’, where E’--E(V)U... U
E(Vp) U E(Z) U 6(Z) is k-node connected. By assumption, for every e { 1, p } and
every two nodes u, v e Vi U Z, the graph G V,. U Z and hence its supergraph (V, C) con-
tains k node disjoint [u, v ]-paths. Let u Vi, v e Vj, :/= j. The edge set C \(E(Z) U
6(Z)) contains a [u, v]-path P by construction. Let ti be the last node of V,- and tj the
first node of Vj that is encountered by going from u to v along P. Since G[ Vg U Z is
k-connected it contains a (u, Z U {tg})-fan and similarly G[VjU Z] contains a
(v, Z U { tj } )-fan. This implies that C contains k node disjoint u, v -paths, and thus C
is k-node connected.

Let M be the matrix whose columns are the incidence vectors of all spanning trees
of 0. Using the arguments of the end of the proof of Theorem 5.6, we can easily show
that the 2-node connectedness of 0 implies that r has full row rank. Hence 3r contains
a nonsingular s s-submatrix M.
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To prove (a) of Theorem 7.4, let e e E’ be an arbitrary edge, say e e E(V1 t_l Z).
Since e is not k-node-essential with respect to G[ VI U Z l, G[ V1 t,J Z] e is still k-node
connected. By assumption and from the arguments used above, it follows that for every
spanning tree T of (, T U E’\ { e } is k-node connected. V1

The conditions of Theorem 7.5 are, in particular, satisfied if G is (k + )-node
connected and if G Vi (A Z is (k + )-connected for all 6 { 1, p }.

Observe that, for k 1, Theorem 7.5 implies that, for any 2-edge connected graph
G (V, E), any partition V, Vp of V, p >- 2, such that G[ Vi] is 2-edge connected
induces a facet defining inequality 1/2 = x(6(Vi)) >-_ p ofNCON (G; CON (G).
By Theorem 4.10 these are exactly the facet-defining inequalities of CON (G) of this
type. It is easy to see that "G[Vg] is 2-edge connected for 1, p" is a necessary
condition for an inequality oftype 7.2 (ii) to define a facet ofNCON G; k). However,
this condition is far from being sufficient for k >_- 2.

In fact, the connectivity conditions on G[Vi I.A Z] in (7.5) cannot be weakened
further. For instance, we can show that for every k >_- there exists a (k + )-node
connected graph G (V, E) with node sets Z, V, Vp

_
V such that [Z] k 1;

V, V2, Vp is a partition of V and such that G[Z is a complete graph, G[Z (J V,.]
and G[Vi] are k-node connected for 1, p and the corresponding inequality
1/2 Pi= x(6a_ z(V,.)) > p does not define a facet ofNCON (G’, k) We describe this
construction for the case where k is even in the following example.

Example 7.6. Let k 2r, r >= 1. We construct a graph G (V, E) with 5k
nodes as follows. Let Ai, 1, 8 and Z be node sets with the following properties
V Z 1,3 (.J8i= Ai, ZI k and Z induces a complete subgraph of G. All Ai are
stable sets of G and satisfy ]A;] r. Every node of Z is linked to every node ofA U
A2 [,] A5 t_l A6 by an edge.

Every node of Ai is linked to every node of Aj. (i < j) by an edge for j +
(i= 1,2,3,5,6,7),i= andj-4, i= 5and j= 8, i= 3andj=7, i=4andj= 8.
The scheme of the graph G obtained this way is displayed in Fig. 1.

It is easy to see that for V [,_j4i= Ai, V2 Ui=sAi the graphs GIVe], G[V2],
G[Z U V1], G[Z U V2] are k-node connected and that G is (k + r)-node connected. But,
for every edge e with one endnode in A7 and the other in As, or one endnode in A3 and

A4

A

A

FIG.
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the other in A4, there is no spanning tree T in 0 (G Z)/V1/V2 (i.e., T is just an
edge) such that T tO E(V) tO E(V2) tO E(Z) tO 6(Z)\ {e} is k-node connected. So by
Theorem 7.4 the corresponding inequality does not define a facet ofNCON (G; k).

We will now give, for every k >_- 2, an example where no two nodes in G[Z] are
adjacent and where K(G[Z to Vii) 1, yet the corresponding inequality defines a facet
ofNCON G; k).

Example 7.7. Let k >_- 2. We construct a graph G (V, E) with p + k nodes,
where p >= k + as follows. Let Z

_
Vwith [Z] k be a node set such that no two

nodes in Z are adjacent. Let V’=- { vl,..., vp) be further p >-k + nodes and set

Vi {vi}, 1,..., p. The subgraph of G induced by V’ is complete and every
node of V’ is linked to every node of Z by an edge. Thus G[Z tO Vi] is a star and
K(G[Z tO V;]) 1. It is easy to see that G is (k + )-connected and that properties (a)
and (b) of Theorem 7.4 are satisfied.

The results of this section show that dropping the integrality stipulations (iv) from
(7.2) yields a reasonable (and, for small fixed k, computationally tractable) LP-relaxation
for the problem of finding a spanning k-connected subgraph of minimum cost.

8. Node and edge connectivity mixed: A model used in practice. We will now in-
troduce a model that describes the current situation in the area of building fiber optical
networks faithfullysee Monma and Shallcross (1989) for a detailed overview of the
approaches to design "survivable" communication networks. This model contains a mix-
ture of certain node and edge connectivity requirements. As far as we can see, graphs
with these kinds of "mixed connectivity" properties have not received much attention
in the graph theory literature nor have the related optimization problems been considered
seriously in combinatorial optimization.

As before we begin with the graph G (V, E) that describes the possible direct
connections between the given locations of switches. (Recall that two nodes s, 6 V are
called (locally) k-connected or (locally) k-edge connected if G contains k s, -paths that
are node-disjoint or edge-disjoint, respectively.) In the network design area it is common
to classify the locations by "type." So, for each node s Vwe introduce two connectivity
parameters, denoted by r and ks; r is called the edge connectivity type, ks the node
connectivity type. As usual we have a cost Ce for all e E E. We are looking for a subset C
of the edge set E of minimum cost c(C) such that for every two nodes s, E V, s 4 t,
(V, C)contains min { r r } edge-disjoint [s, t]-paths and min ks, kt } node-disjoint
s, t]-paths.

The conditions stated above require that the "cable network" (V, C) is locally
min { rs, r }-edge connected and locally min { ks, kt }-connected. Since local k-connect-
edness implies local k-edge connectedness we may assume that

(8.1) rs>=ks for all se V.

Setting, for all s, e V, s 4 t, rst min { rs, r }, dst 1, and kst min ks, kt } 1, we
see that the problem defined above can be viewed as a special case of (2.1).

In telephone network applications of the type considered here, we typically have

(8.2) rs,kse {0, 1,2} for all se V.

(But we also know of a communication network application with ks E { 0, 1, 5 } .)
The nodes s V with rs ks 0 are the Steiner nodes. They are not required to be in
the fiber optical network but they may be used to construct the network. The nodes
(respectively, offices or locations) s with ks 2 are sometimes called "special offices."
They frequently carry high loads of communication traffic. Their failure--without the
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possibility of rerouting--would be fatal to the system and result in considerable losses
(financially and in customer good-will).

Using (2.1) and (7.2) we can formulate the mixed connectivity problem described
above as an integer linear program as follows:

(8.3) min cTx
(i) x(6(W)) >= min {rs,

p

(ii) iZ1-- x(f(V,.)) >= p

for all s, V, s 4 t, and
for all We_ V, s e W, W;

for all s, V, s 4 and for all
Z V\ {s, t}, IZI min {ks, kt} 1,
and all nontrivial partitions
V,..., VpofV\Z,p>=2;

(iii) 0_-<Xe -< for alle6E;

(iv) Xe e { 0, for all e E.

Needless to say, (8.3) belongs to the class of NP-hard optimization problems; in
fact, this is true even in the case where k and r satisfy (8.1) and (8.2), since the Steiner
tree problem is a special case.

As before, to address optimization issues it is natural to introduce a polytope as-
sociated with the integral solutions of (8.3). So, let G (V, E) be a graph and k e R v,
r R v be two vectors of nonnegative integers. Then

CONr,k (G)-- conv { xREI x satisfies (8.3)(i), (iv)

is the convex hull of the incidence vectors xc of edge sets C
_
E such that for every two

nodes s, V, s 4 t, the subgraph (V, C) is locally min { ks, kt }-connected and locally
min { rs, r } -edge connected.

As mentioned before, the separation problems for the inequality systems of (8.3)
can be solved in polynomial time, for rs and ks small, with not so small degrees of the
polynomials of the running time functions, however. To get practically efficient cutting
plane algorithms for the solution of (8.3) we have to use heuristic separation routines in
addition.

The theoretical work presented here on (partial) characterizations of facets will be
used to design fast heuristic separation algorithms. Our work on polyhedral properties
of CONr.k (G), as well as on computational aspects of the LP-relaxation that follows
from (8.3), is still in progress and will be reported in a forthcoming paper.
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